Update codeparrot_training.py
Browse files- codeparrot_training.py +11 -6
codeparrot_training.py
CHANGED
|
@@ -15,7 +15,7 @@ import wandb
|
|
| 15 |
|
| 16 |
class ConstantLengthDataset(IterableDataset):
|
| 17 |
|
| 18 |
-
def __init__(self, tokenizer, dataset, seq_length=1024,
|
| 19 |
num_of_sequences=1024, chars_per_token=3.6):
|
| 20 |
self.tokenizer = tokenizer
|
| 21 |
self.concat_token_id = tokenizer.bos_token_id
|
|
@@ -23,6 +23,7 @@ class ConstantLengthDataset(IterableDataset):
|
|
| 23 |
self.seq_length = seq_length
|
| 24 |
self.input_characters = seq_length * chars_per_token * num_of_sequences
|
| 25 |
self.epoch = 0
|
|
|
|
| 26 |
|
| 27 |
def __iter__(self):
|
| 28 |
iterator = iter(self.dataset)
|
|
@@ -36,9 +37,13 @@ class ConstantLengthDataset(IterableDataset):
|
|
| 36 |
buffer.append(next(iterator)['content'])
|
| 37 |
buffer_len += len(buffer[-1])
|
| 38 |
except StopIteration:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
|
| 43 |
all_token_ids = []
|
| 44 |
for tokenized_input in tokenized_inputs:
|
|
@@ -77,9 +82,9 @@ def create_dataloaders(dataset_name, args):
|
|
| 77 |
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
|
| 78 |
seed=args.seed)
|
| 79 |
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
|
| 80 |
-
train_dataset = ConstantLengthDataset(tokenizer, train_data,
|
| 81 |
seq_length=args.seq_length)
|
| 82 |
-
valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
|
| 83 |
seq_length=args.seq_length)
|
| 84 |
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
|
| 85 |
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
|
|
|
|
| 15 |
|
| 16 |
class ConstantLengthDataset(IterableDataset):
|
| 17 |
|
| 18 |
+
def __init__(self, tokenizer, dataset, infinite=False, seq_length=1024,
|
| 19 |
num_of_sequences=1024, chars_per_token=3.6):
|
| 20 |
self.tokenizer = tokenizer
|
| 21 |
self.concat_token_id = tokenizer.bos_token_id
|
|
|
|
| 23 |
self.seq_length = seq_length
|
| 24 |
self.input_characters = seq_length * chars_per_token * num_of_sequences
|
| 25 |
self.epoch = 0
|
| 26 |
+
self.infinite = infinite
|
| 27 |
|
| 28 |
def __iter__(self):
|
| 29 |
iterator = iter(self.dataset)
|
|
|
|
| 37 |
buffer.append(next(iterator)['content'])
|
| 38 |
buffer_len += len(buffer[-1])
|
| 39 |
except StopIteration:
|
| 40 |
+
if self.infinite:
|
| 41 |
+
iterator = iter(self.dataset)
|
| 42 |
+
self.epoch += 1
|
| 43 |
+
logger.info(f"Dataset epoch: {self.epoch}")
|
| 44 |
+
else:
|
| 45 |
+
more_examples = False
|
| 46 |
+
break
|
| 47 |
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
|
| 48 |
all_token_ids = []
|
| 49 |
for tokenized_input in tokenized_inputs:
|
|
|
|
| 82 |
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
|
| 83 |
seed=args.seed)
|
| 84 |
valid_data = load_dataset(dataset_name+'-valid', split="train", **ds_kwargs)
|
| 85 |
+
train_dataset = ConstantLengthDataset(tokenizer, train_data, infinite=True,
|
| 86 |
seq_length=args.seq_length)
|
| 87 |
+
valid_dataset = ConstantLengthDataset(tokenizer, valid_data, infinite=False,
|
| 88 |
seq_length=args.seq_length)
|
| 89 |
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
|
| 90 |
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
|