codelion commited on
Commit
55b3d89
·
verified ·
1 Parent(s): bcc4836

Add comprehensive model card with usage instructions and evaluation results

Browse files
Files changed (1) hide show
  1. README.md +161 -195
README.md CHANGED
@@ -1,199 +1,165 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ base_model: meta-llama/Llama-3.2-1B-Instruct
3
+ tags:
4
+ - ellora
5
+ - lora
6
+ - tool-calling
7
+ - function-calling
8
+ - code-exploration
9
+ - magpie
10
+ - peft
11
+ - llama
12
+ library_name: peft
13
+ license: apache-2.0
14
+ language:
15
+ - en
16
+ pipeline_tag: text-generation
17
+ inference: true
18
+ model_type: llama
19
  ---
20
+ # codelion/Llama-3.2-1B-Instruct-tool-calling-lora
21
+
22
+ ## 🛠️ Tool Calling LoRA with Magpie
23
+
24
+ This LoRA adapter enhances meta-llama/Llama-3.2-1B-Instruct with tool calling capabilities for code exploration and manipulation. Trained using a hybrid Magpie + real execution approach on diverse coding scenarios.
25
+
26
+ ## 🎯 Key Features
27
+
28
+ - **Tool Calling**: Teaches models to use development tools effectively
29
+ - **Code Exploration**: Navigate and understand unfamiliar codebases
30
+ - **Real Execution**: Training data generated from actual tool execution
31
+ - **OpenAI Format**: Compatible with OpenAI function calling format
32
+ - **Multi-Tool Sequences**: Learns to chain multiple tools for complex tasks
33
+
34
+ ## 📊 Performance Metrics
35
+
36
+ - **Base Model**: meta-llama/Llama-3.2-1B-Instruct
37
+ - **Training Method**: Standard LoRA fine-tuning
38
+ - **LoRA Rank**: 64
39
+ - **LoRA Alpha**: 128
40
+ - **Training Samples**: 1000
41
+ - **Sequence Success Rate**: 100.0%
42
+ - **Tool Call Accuracy**: 100.0%
43
+ - **Average Tools per Sequence**: 3.0
44
+ ## 🔧 Usage
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+ from peft import PeftModel
49
+
50
+ # Load base model and tokenizer
51
+ model = AutoModelForCausalLM.from_pretrained(
52
+ "meta-llama/Llama-3.2-1B-Instruct",
53
+ torch_dtype="auto",
54
+ device_map="auto"
55
+ )
56
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
57
+
58
+ # Load tool calling LoRA adapter
59
+ model = PeftModel.from_pretrained(model, "codelion/Llama-3.2-1B-Instruct-tool-calling-lora")
60
+
61
+ # Example: Use with tool calling prompt
62
+ prompt = '''You have access to the following tools:
63
+ - list_directory: List contents of a directory
64
+ - search_files: Search for files containing specific content
65
+ - read_file: Read a single file's contents
66
+ - get_file_info: Get file metadata
67
+
68
+ User: Help me understand how user authentication works in this Flask application
69
+ Response:
70
+
71
+ inputs = tokenizer(prompt, return_tensors="pt")
72
+ outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
73
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
74
+ print(response)
75
+ ```
76
+ ## 📈 Expected Output Format
77
+
78
+ The model will generate tool calling sequences in OpenAI format:
79
+
80
+ ```json
81
+ {
82
+ "tool_calls": [
83
+ {
84
+ "id": "call_1",
85
+ "type": "function",
86
+ "function": {
87
+ "name": "search_files",
88
+ "arguments": "{\"query\": \"auth\", \"file_types\": [\".py\"]}"
89
+ }
90
+ },
91
+ {
92
+ "id": "call_2",
93
+ "type": "function",
94
+ "function": {
95
+ "name": "read_file",
96
+ "arguments": "{\"path\": \"app.py\"}"
97
+ }
98
+ }
99
+ ]
100
+ }
101
+ ```
102
+ ## 🧪 Training Details
103
+
104
+ - **Method**: Standard LoRA fine-tuning with tool calling data
105
+ - **Data Generation**: Magpie scenarios + real tool execution
106
+ - **Tool Execution**: Safe sandbox environment for code exploration
107
+ - **Scenario Types**: Code exploration, bug hunting, feature addition, refactoring
108
+ - **Quality Validation**: Minimum tool usage and success rate thresholds
109
+
110
+ ## 📚 Available Tools
111
+
112
+ The model is trained to use these development tools:
113
+
114
+ 1. **list_directory**: Browse project structure
115
+ - Parameters: `path` (directory to list)
116
+
117
+ 2. **search_files**: Find files containing specific content
118
+ - Parameters: `query`, `path`, `file_types`, `regex`
119
+
120
+ 3. **read_file**: Read complete file contents
121
+ - Parameters: `path` (file to read)
122
+
123
+ 4. **read_multiple_files**: Read multiple files at once
124
+ - Parameters: `paths` (list of files)
125
+
126
+ 5. **get_file_info**: Get file metadata
127
+ - Parameters: `path` (file or directory)
128
+
129
+ 6. **create_file**: Create new files (if safety mode disabled)
130
+ - Parameters: `path`, `content`
131
+
132
+ 7. **edit_file**: Modify existing files (if safety mode disabled)
133
+ - Parameters: `path`, `changes`
134
+
135
+ ## 🎭 Tool Usage Patterns Learned
136
+
137
+ - **Exploration First**: Start with `list_directory` to understand structure
138
+ - **Search Before Read**: Use `search_files` to find relevant files
139
+ - **Batch Operations**: Use `read_multiple_files` for related files
140
+ - **Progressive Refinement**: Start broad, then focus on specific files
141
+ ## 🔬 Evaluation
142
+
143
+ The adapter was evaluated on diverse coding scenarios:
144
+ - Sequence success rate: 100.0%
145
+ - Tool call accuracy: 100.0%
146
+ - Average tools per sequence: 3.0
147
+ - Successful executions: 5/5
148
+
149
+ ## 🏷️ Tool Usage Distribution
150
+
151
+ Most frequently used tools during evaluation:
152
+ - **list_directory**: 5 uses
153
+ - **read_file**: 5 uses
154
+ - **search_files**: 5 uses
155
+
156
+ ## 🏷️ Related
157
+
158
+ - **Dataset**: [codelion/Llama-3.2-1B-Instruct-magpie-tool-calling](https://huggingface.co/datasets/codelion/Llama-3.2-1B-Instruct-magpie-tool-calling)
159
+ - **Base Model**: [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
160
+ - **Framework**: [PEFT](https://github.com/huggingface/peft)
161
+ - **Training Approach**: Magpie + Real Execution
162
 
163
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164
 
165
+ *This adapter is part of the [Ellora project](https://github.com/codelion/ellora) - standardized recipes for enhancing LLM capabilities.*