Add comprehensive model card with usage instructions and evaluation results
Browse files
README.md
CHANGED
@@ -1,199 +1,165 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
3 |
+
tags:
|
4 |
+
- ellora
|
5 |
+
- lora
|
6 |
+
- tool-calling
|
7 |
+
- function-calling
|
8 |
+
- code-exploration
|
9 |
+
- magpie
|
10 |
+
- peft
|
11 |
+
- llama
|
12 |
+
library_name: peft
|
13 |
+
license: apache-2.0
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
inference: true
|
18 |
+
model_type: llama
|
19 |
---
|
20 |
+
# codelion/Llama-3.2-1B-Instruct-tool-calling-lora
|
21 |
+
|
22 |
+
## 🛠️ Tool Calling LoRA with Magpie
|
23 |
+
|
24 |
+
This LoRA adapter enhances meta-llama/Llama-3.2-1B-Instruct with tool calling capabilities for code exploration and manipulation. Trained using a hybrid Magpie + real execution approach on diverse coding scenarios.
|
25 |
+
|
26 |
+
## 🎯 Key Features
|
27 |
+
|
28 |
+
- **Tool Calling**: Teaches models to use development tools effectively
|
29 |
+
- **Code Exploration**: Navigate and understand unfamiliar codebases
|
30 |
+
- **Real Execution**: Training data generated from actual tool execution
|
31 |
+
- **OpenAI Format**: Compatible with OpenAI function calling format
|
32 |
+
- **Multi-Tool Sequences**: Learns to chain multiple tools for complex tasks
|
33 |
+
|
34 |
+
## 📊 Performance Metrics
|
35 |
+
|
36 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
37 |
+
- **Training Method**: Standard LoRA fine-tuning
|
38 |
+
- **LoRA Rank**: 64
|
39 |
+
- **LoRA Alpha**: 128
|
40 |
+
- **Training Samples**: 1000
|
41 |
+
- **Sequence Success Rate**: 100.0%
|
42 |
+
- **Tool Call Accuracy**: 100.0%
|
43 |
+
- **Average Tools per Sequence**: 3.0
|
44 |
+
## 🔧 Usage
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
+
from peft import PeftModel
|
49 |
+
|
50 |
+
# Load base model and tokenizer
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(
|
52 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
53 |
+
torch_dtype="auto",
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
57 |
+
|
58 |
+
# Load tool calling LoRA adapter
|
59 |
+
model = PeftModel.from_pretrained(model, "codelion/Llama-3.2-1B-Instruct-tool-calling-lora")
|
60 |
+
|
61 |
+
# Example: Use with tool calling prompt
|
62 |
+
prompt = '''You have access to the following tools:
|
63 |
+
- list_directory: List contents of a directory
|
64 |
+
- search_files: Search for files containing specific content
|
65 |
+
- read_file: Read a single file's contents
|
66 |
+
- get_file_info: Get file metadata
|
67 |
+
|
68 |
+
User: Help me understand how user authentication works in this Flask application
|
69 |
+
Response:
|
70 |
+
|
71 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
72 |
+
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
|
73 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
74 |
+
print(response)
|
75 |
+
```
|
76 |
+
## 📈 Expected Output Format
|
77 |
+
|
78 |
+
The model will generate tool calling sequences in OpenAI format:
|
79 |
+
|
80 |
+
```json
|
81 |
+
{
|
82 |
+
"tool_calls": [
|
83 |
+
{
|
84 |
+
"id": "call_1",
|
85 |
+
"type": "function",
|
86 |
+
"function": {
|
87 |
+
"name": "search_files",
|
88 |
+
"arguments": "{\"query\": \"auth\", \"file_types\": [\".py\"]}"
|
89 |
+
}
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"id": "call_2",
|
93 |
+
"type": "function",
|
94 |
+
"function": {
|
95 |
+
"name": "read_file",
|
96 |
+
"arguments": "{\"path\": \"app.py\"}"
|
97 |
+
}
|
98 |
+
}
|
99 |
+
]
|
100 |
+
}
|
101 |
+
```
|
102 |
+
## 🧪 Training Details
|
103 |
+
|
104 |
+
- **Method**: Standard LoRA fine-tuning with tool calling data
|
105 |
+
- **Data Generation**: Magpie scenarios + real tool execution
|
106 |
+
- **Tool Execution**: Safe sandbox environment for code exploration
|
107 |
+
- **Scenario Types**: Code exploration, bug hunting, feature addition, refactoring
|
108 |
+
- **Quality Validation**: Minimum tool usage and success rate thresholds
|
109 |
+
|
110 |
+
## 📚 Available Tools
|
111 |
+
|
112 |
+
The model is trained to use these development tools:
|
113 |
+
|
114 |
+
1. **list_directory**: Browse project structure
|
115 |
+
- Parameters: `path` (directory to list)
|
116 |
+
|
117 |
+
2. **search_files**: Find files containing specific content
|
118 |
+
- Parameters: `query`, `path`, `file_types`, `regex`
|
119 |
+
|
120 |
+
3. **read_file**: Read complete file contents
|
121 |
+
- Parameters: `path` (file to read)
|
122 |
+
|
123 |
+
4. **read_multiple_files**: Read multiple files at once
|
124 |
+
- Parameters: `paths` (list of files)
|
125 |
+
|
126 |
+
5. **get_file_info**: Get file metadata
|
127 |
+
- Parameters: `path` (file or directory)
|
128 |
+
|
129 |
+
6. **create_file**: Create new files (if safety mode disabled)
|
130 |
+
- Parameters: `path`, `content`
|
131 |
+
|
132 |
+
7. **edit_file**: Modify existing files (if safety mode disabled)
|
133 |
+
- Parameters: `path`, `changes`
|
134 |
+
|
135 |
+
## 🎭 Tool Usage Patterns Learned
|
136 |
+
|
137 |
+
- **Exploration First**: Start with `list_directory` to understand structure
|
138 |
+
- **Search Before Read**: Use `search_files` to find relevant files
|
139 |
+
- **Batch Operations**: Use `read_multiple_files` for related files
|
140 |
+
- **Progressive Refinement**: Start broad, then focus on specific files
|
141 |
+
## 🔬 Evaluation
|
142 |
+
|
143 |
+
The adapter was evaluated on diverse coding scenarios:
|
144 |
+
- Sequence success rate: 100.0%
|
145 |
+
- Tool call accuracy: 100.0%
|
146 |
+
- Average tools per sequence: 3.0
|
147 |
+
- Successful executions: 5/5
|
148 |
+
|
149 |
+
## 🏷️ Tool Usage Distribution
|
150 |
+
|
151 |
+
Most frequently used tools during evaluation:
|
152 |
+
- **list_directory**: 5 uses
|
153 |
+
- **read_file**: 5 uses
|
154 |
+
- **search_files**: 5 uses
|
155 |
+
|
156 |
+
## 🏷️ Related
|
157 |
+
|
158 |
+
- **Dataset**: [codelion/Llama-3.2-1B-Instruct-magpie-tool-calling](https://huggingface.co/datasets/codelion/Llama-3.2-1B-Instruct-magpie-tool-calling)
|
159 |
+
- **Base Model**: [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
160 |
+
- **Framework**: [PEFT](https://github.com/huggingface/peft)
|
161 |
+
- **Training Approach**: Magpie + Real Execution
|
162 |
|
163 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
*This adapter is part of the [Ellora project](https://github.com/codelion/ellora) - standardized recipes for enhancing LLM capabilities.*
|