chrisrutherford commited on
Commit
33c42ce
·
verified ·
1 Parent(s): fd221f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -125
README.md CHANGED
@@ -1,125 +0,0 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: Qwen/Qwen3-8B-Base
5
- tags:
6
- - llama-factory
7
- - full
8
- - generated_from_trainer
9
- - plantuml
10
- - troubleshooting
11
- - conversational-ai
12
- model-index:
13
- - name: pumlChat
14
- results: []
15
- ---
16
-
17
- # pumlChat
18
-
19
- This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on a PlantUML-based troubleshooting dataset. It specializes in providing conversational fault-finding assistance based on PlantUML system diagrams.
20
-
21
- ## Model description
22
-
23
- pumlChat is a conversational AI model that ingests PlantUML diagrams describing complex systems and provides interactive troubleshooting support. The model understands system components, their relationships, failure modes, and dependencies from PlantUML specifications, then engages in natural dialogue to help diagnose and resolve issues.
24
-
25
- Key features:
26
- - Interprets PlantUML system diagrams with component specifications
27
- - Provides step-by-step troubleshooting guidance
28
- - Understands component interdependencies and cascading failures
29
- - Offers risk-aware diagnostic suggestions
30
- - Maintains conversational context throughout the troubleshooting process
31
-
32
- ## Intended uses & limitations
33
-
34
- ### Intended uses
35
- - **Technical support automation**: Interactive troubleshooting for complex systems
36
- - **Maintenance assistance**: Guided fault diagnosis based on system specifications
37
- - **Training and education**: Teaching systematic troubleshooting approaches
38
- - **Documentation companion**: Converting static system diagrams into interactive help
39
-
40
- ### Limitations
41
- - Requires properly formatted PlantUML diagrams with detailed component specifications
42
- - Best suited for systems with well-defined components and failure modes
43
- - Troubleshooting quality depends on the completeness of the PlantUML specification
44
- - Should not replace critical safety systems or professional maintenance where required
45
-
46
- ## Training and evaluation data
47
-
48
- The model was trained on conversational datasets where:
49
- - **System context**: Detailed PlantUML diagrams describing system components, their functions, specifications, failure modes, and interdependencies
50
- - **Conversations**: Multi-turn dialogues demonstrating systematic troubleshooting approaches
51
- - **Domain**: Focus on electromechanical systems (e.g., Segway personal transporters)
52
-
53
- ## Training procedure
54
-
55
- ### Training hyperparameters
56
-
57
- The following hyperparameters were used during training:
58
- - learning_rate: 5e-05
59
- - train_batch_size: 1
60
- - eval_batch_size: 8
61
- - seed: 42
62
- - distributed_type: multi-GPU
63
- - num_devices: 8
64
- - gradient_accumulation_steps: 16
65
- - total_train_batch_size: 128
66
- - total_eval_batch_size: 64
67
- - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
68
- - lr_scheduler_type: cosine
69
- - num_epochs: 3.0
70
-
71
- ### Training results
72
-
73
- The model demonstrates strong capabilities in:
74
- - Understanding complex system relationships from PlantUML
75
- - Systematic troubleshooting progression
76
- - Risk-aware diagnostic recommendations
77
- - Natural conversational flow while maintaining technical accuracy
78
-
79
- ### Framework versions
80
-
81
- - Transformers 4.52.3
82
- - Pytorch 2.6.0+cu124
83
- - Datasets 3.6.0
84
- - Tokenizers 0.21.1
85
-
86
- ## Usage Example
87
-
88
- ```python
89
- from transformers import AutoModelForCausalLM, AutoTokenizer
90
-
91
- # Load model and tokenizer
92
- model = AutoModelForCausalLM.from_pretrained("your-username/pumlChat")
93
- tokenizer = AutoTokenizer.from_pretrained("your-username/pumlChat")
94
-
95
- # Prepare the PlantUML diagram and user query
96
- plantuml_diagram = """@startuml
97
- ... your system PlantUML diagram ...
98
- @enduml"""
99
-
100
- messages = [
101
- {"from": "human", "value": plantuml_diagram},
102
- {"from": "gpt", "value": "system understood"},
103
- {"from": "human", "value": "My device is making a clicking noise and won't start. Can you help?"}
104
- ]
105
-
106
- # Format and generate response
107
- input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
108
- inputs = tokenizer(input_text, return_tensors="pt")
109
-
110
- outputs = model.generate(
111
- **inputs,
112
- max_length=512,
113
- temperature=0.7,
114
- do_sample=True,
115
- pad_token_id=tokenizer.eos_token_id
116
- )
117
-
118
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
119
- print(response)
120
- ```
121
-
122
- Example output
123
-
124
-
125
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65be16980a0c57943fbe8b00/xNJOszw2AGvXbpIBXrIiU.png)