File size: 2,631 Bytes
6f6f989
 
 
 
e2effba
 
 
 
 
 
 
 
 
 
 
 
53ebf50
5fc75ae
e2effba
 
 
 
53ebf50
e2effba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10a1fa7
 
 
e2effba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model:
- openai/gpt-oss-20b
---
# GPT-OSS PlantUML Generation Model V1

## Model Description

GPT-OSS PlantUML Generation Model V1 is a fine-tuned language model specialised in generating PlantUML diagrams from natural language descriptions. The model excels at creating complex conceptual diagrams that map philosophical, mathematical, and scientific concepts across different domains and historical periods.

## Model Details

- **Base Model:** GPT-OSS architecture
- **Model Type:** Causal Language Model
- **Language(s):** English
- **License:** Apache 2.0
- **Fine-tuned from:** openai/gpt-oss-20b (abliterated by huihui.ai)

## Training Details

### Training Data
The model was fine-tuned on the PumlGenV1 dataset of natural language descriptions paired with corresponding PlantUML diagram code.

### Training Configuration
- **Optimiser:** AdamW 8-bit
- **Learning Rate Schedule:** LoRA (Low-Rank Adaptation)
  - LoRA Rank: 1000
  - LoRA Alpha: 2000
- **Training Epochs:** 3
- **Batch Size:** 1
- **Gradient Accumulation Steps:** 16
- **Effective Batch Size:** 16

### Training Infrastructure
- Fine-tuning approach: Parameter-efficient fine-tuning with LoRA
- Memory optimisation: 8-bit AdamW optimiser

## Intended Use

### Primary Use Cases
- **Academic Research:** Visualising complex philosophical and scientific concepts
- **Educational Content:** Creating diagrams for teaching abstract ideas
- **Documentation:** Generating visual representations of conceptual frameworks
- **Knowledge Mapping:** Illustrating relationships between ideas across disciplines

### Example Usage

**Input Prompt:**
```
Map the evolution of the concept of 'nothing' from Parmenides through Buddhist śūnyatā to quantum vacuum fluctuations, showing philosophical, mathematical, and physical interpretations
```

**Expected Output:**

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65be16980a0c57943fbe8b00/qzuoX_hBMSJsFi_VfpK9M.png)


## Usage Examples

### Basic Usage

#### Python
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("chrisrutherford/gpt-oss-pumlGenV1")
model = AutoModelForCausalLM.from_pretrained("chrisrutherford/gpt-oss-pumlGenV1")

prompt = "Map the evolution of the concept of 'nothing' from Parmenides through Buddhist śūnyatā to quantum vacuum fluctuations, showing philosophical, mathematical, and physical interpretations"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=1000)
puml_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
```