Commit
·
2bece07
1
Parent(s):
0a07df8
Upload frankenmerge script
Browse files- frankenllama_22b.py +188 -0
frankenllama_22b.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# Charles O. Goddard
|
| 3 |
+
# 7/20/2023
|
| 4 |
+
"""Script used to generate the base frankenmerge. Output will need fine-tuning to be useful."""
|
| 5 |
+
|
| 6 |
+
import copy
|
| 7 |
+
import torch
|
| 8 |
+
from torch import Tensor, nn
|
| 9 |
+
import transformers
|
| 10 |
+
|
| 11 |
+
from transformers.models.llama.modeling_llama import (
|
| 12 |
+
LlamaForCausalLM,
|
| 13 |
+
LlamaDecoderLayer,
|
| 14 |
+
)
|
| 15 |
+
from transformers import LlamaForCausalLM, LlamaConfig
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import transformers
|
| 19 |
+
import numpy as np
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
MODEL_NAME_13B = "meta-llama/Llama-2-13b-hf" # primary model
|
| 23 |
+
MODEL_NAME_33B = "huggyllama/llama-30b" # donor
|
| 24 |
+
BLOCK_DIAGONAL = True
|
| 25 |
+
# If BLOCK_DIAGONAL is set to True, each tensor in the resultant model will form a
|
| 26 |
+
# block diagonal matrix, as illustrated below:
|
| 27 |
+
|
| 28 |
+
# a a a 0 0
|
| 29 |
+
# a a a 0 0
|
| 30 |
+
# a a a 0 0
|
| 31 |
+
# 0 0 0 b b
|
| 32 |
+
# 0 0 0 b b
|
| 33 |
+
|
| 34 |
+
# In this configuration, the states (hidden and intermediate) from the original
|
| 35 |
+
# and donor models are completely decoupled. That is, the hidden states
|
| 36 |
+
# corresponding to the original model remain unchanged, and the new dimensions
|
| 37 |
+
# added from the donor model do not depend on the hidden states of the original model.
|
| 38 |
+
|
| 39 |
+
# If BLOCK_DIAGONAL is set to False, the tensors will instead have the following form:
|
| 40 |
+
|
| 41 |
+
# a a a 0 0
|
| 42 |
+
# a a a 0 0
|
| 43 |
+
# a a a 0 0
|
| 44 |
+
# b b b b b
|
| 45 |
+
# b b b b b
|
| 46 |
+
|
| 47 |
+
# In this case, the output of the newly added attention heads depends on the hidden
|
| 48 |
+
# state values as if they were part of the donor model. Although the original model's
|
| 49 |
+
# hidden states remain unchanged in either case, interaction between the new and old
|
| 50 |
+
# features will result in features of varying usefulness.
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class NoInit:
|
| 54 |
+
def __enter__(self):
|
| 55 |
+
def noop(*args, **kwargs):
|
| 56 |
+
pass
|
| 57 |
+
|
| 58 |
+
(k, u, n) = (
|
| 59 |
+
torch.nn.init.kaiming_uniform_,
|
| 60 |
+
torch.nn.init.uniform_,
|
| 61 |
+
torch.nn.init.normal_,
|
| 62 |
+
)
|
| 63 |
+
torch.nn.init.kaiming_uniform_ = noop
|
| 64 |
+
torch.nn.init.uniform_ = noop
|
| 65 |
+
torch.nn.init.normal_ = noop
|
| 66 |
+
|
| 67 |
+
transformers.modeling_utils._init_weights = False
|
| 68 |
+
self.funcs = (k, u, n)
|
| 69 |
+
|
| 70 |
+
def __exit__(self, *args):
|
| 71 |
+
(k, u, n) = self.funcs
|
| 72 |
+
(
|
| 73 |
+
torch.nn.init.kaiming_uniform_,
|
| 74 |
+
torch.nn.init.uniform_,
|
| 75 |
+
torch.nn.init.normal_,
|
| 76 |
+
) = (
|
| 77 |
+
k,
|
| 78 |
+
u,
|
| 79 |
+
n,
|
| 80 |
+
)
|
| 81 |
+
transformers.modeling_utils._init_weights = True
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def format_kmb(n, digits=None):
|
| 85 |
+
n = int(n)
|
| 86 |
+
if n < 1000:
|
| 87 |
+
return str(n)
|
| 88 |
+
elif n < 1000_000:
|
| 89 |
+
return f"{round(n/1000, digits)}k"
|
| 90 |
+
elif n < 1000 * 1000 * 1000:
|
| 91 |
+
return f"{round(n/(1000*1000), digits)}m"
|
| 92 |
+
else:
|
| 93 |
+
return f"{round(n/(1000*1000*1000), digits)}b"
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def count_params(model):
|
| 97 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
| 98 |
+
params = sum([np.prod(p.size()) for p in model_parameters])
|
| 99 |
+
return int(params)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
torch.set_default_dtype(torch.float16)
|
| 103 |
+
|
| 104 |
+
config_13b: LlamaConfig = LlamaConfig.from_pretrained(MODEL_NAME_13B)
|
| 105 |
+
config_33b: LlamaConfig = LlamaConfig.from_pretrained(MODEL_NAME_33B)
|
| 106 |
+
config_more = copy.deepcopy(config_13b)
|
| 107 |
+
config_more.intermediate_size = config_33b.intermediate_size
|
| 108 |
+
config_more.hidden_size = config_33b.hidden_size
|
| 109 |
+
config_more.num_key_value_heads = config_33b.num_key_value_heads
|
| 110 |
+
config_more.num_attention_heads = config_33b.num_key_value_heads
|
| 111 |
+
|
| 112 |
+
print(config_more)
|
| 113 |
+
|
| 114 |
+
with NoInit():
|
| 115 |
+
model = LlamaForCausalLM(config_more)
|
| 116 |
+
|
| 117 |
+
print(f"{format_kmb(count_params(model), 3)} parameters")
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def merge_tensors_inplace(dest: Tensor, s0: Tensor, s1: Tensor, block_diagonal: bool):
|
| 121 |
+
dest.zero_()
|
| 122 |
+
if block_diagonal:
|
| 123 |
+
dest[s0.shape[0] :, s0.shape[1] :] = s1[
|
| 124 |
+
s0.shape[0] : dest.shape[0],
|
| 125 |
+
s0.shape[1] : dest.shape[1],
|
| 126 |
+
]
|
| 127 |
+
else:
|
| 128 |
+
dest[s0.shape[0] :, :] = s1[
|
| 129 |
+
s0.shape[0] : dest.shape[0],
|
| 130 |
+
: dest.shape[1],
|
| 131 |
+
]
|
| 132 |
+
dest[: s0.shape[0], : s0.shape[1]] = s0
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
with NoInit():
|
| 136 |
+
donor_13b = (
|
| 137 |
+
LlamaForCausalLM.from_pretrained(MODEL_NAME_13B).to(torch.float16).eval()
|
| 138 |
+
)
|
| 139 |
+
donor_33b = (
|
| 140 |
+
LlamaForCausalLM.from_pretrained(MODEL_NAME_33B).to(torch.float16).eval()
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
for layer_idx in range(len(model.model.layers)):
|
| 145 |
+
layer: LlamaDecoderLayer = model.model.layers[layer_idx]
|
| 146 |
+
l13: LlamaDecoderLayer = donor_13b.model.layers[layer_idx]
|
| 147 |
+
l33: LlamaDecoderLayer = donor_33b.model.layers[layer_idx]
|
| 148 |
+
|
| 149 |
+
for name in ("q_proj", "k_proj", "v_proj", "o_proj"):
|
| 150 |
+
dest: nn.Linear = getattr(layer.self_attn, name)
|
| 151 |
+
s13: nn.Linear = getattr(l13.self_attn, name)
|
| 152 |
+
s33: nn.Linear = getattr(l33.self_attn, name)
|
| 153 |
+
merge_tensors_inplace(dest.weight, s13.weight, s33.weight, BLOCK_DIAGONAL)
|
| 154 |
+
|
| 155 |
+
for name in ("up_proj", "gate_proj", "down_proj"):
|
| 156 |
+
dest: nn.Linear = getattr(layer.mlp, name)
|
| 157 |
+
s13: nn.Linear = getattr(l13.mlp, name)
|
| 158 |
+
s33: nn.Linear = getattr(l33.mlp, name)
|
| 159 |
+
merge_tensors_inplace(dest.weight, s13.weight, s33.weight, BLOCK_DIAGONAL)
|
| 160 |
+
|
| 161 |
+
layer.input_layernorm.weight[:] = l33.input_layernorm.weight[
|
| 162 |
+
: layer.input_layernorm.weight.shape[0]
|
| 163 |
+
]
|
| 164 |
+
layer.input_layernorm.weight[
|
| 165 |
+
: l13.input_layernorm.weight.shape[0]
|
| 166 |
+
] = l13.input_layernorm.weight
|
| 167 |
+
layer.post_attention_layernorm.weight[:] = l33.post_attention_layernorm.weight[
|
| 168 |
+
: layer.post_attention_layernorm.weight.shape[0]
|
| 169 |
+
]
|
| 170 |
+
layer.post_attention_layernorm.weight[
|
| 171 |
+
: l13.post_attention_layernorm.weight.shape[0]
|
| 172 |
+
] = l13.post_attention_layernorm.weight
|
| 173 |
+
|
| 174 |
+
# have initial output depend on only original llama2-13b features, so model
|
| 175 |
+
# starts unimpaired and can learn to incorporate the new features as well
|
| 176 |
+
model.lm_head.weight.zero_()
|
| 177 |
+
model.lm_head.weight[
|
| 178 |
+
: donor_13b.lm_head.weight.shape[0], : donor_13b.lm_head.weight.shape[1]
|
| 179 |
+
] = donor_13b.lm_head.weight
|
| 180 |
+
|
| 181 |
+
merge_tensors_inplace(
|
| 182 |
+
model.model.embed_tokens.weight,
|
| 183 |
+
donor_13b.model.embed_tokens.weight,
|
| 184 |
+
donor_33b.model.embed_tokens.weight,
|
| 185 |
+
BLOCK_DIAGONAL,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
model.save_pretrained("./llama2-22b/", safe_serialization=True)
|