Fix CLI argument passing
Browse files- marcai/cli.py +0 -2
- marcai/find_matches.py +8 -9
- marcai/predict.py +3 -5
- marcai/process.py +6 -13
- marcai/train.py +3 -4
marcai/cli.py
CHANGED
|
@@ -33,9 +33,7 @@ def main():
|
|
| 33 |
find_matches_parser.set_defaults(func=find_matches.main)
|
| 34 |
|
| 35 |
args = parser.parse_args()
|
| 36 |
-
|
| 37 |
args.func(args)
|
| 38 |
-
|
| 39 |
|
| 40 |
|
| 41 |
if __name__ == "__main__":
|
|
|
|
| 33 |
find_matches_parser.set_defaults(func=find_matches.main)
|
| 34 |
|
| 35 |
args = parser.parse_args()
|
|
|
|
| 36 |
args.func(args)
|
|
|
|
| 37 |
|
| 38 |
|
| 39 |
if __name__ == "__main__":
|
marcai/find_matches.py
CHANGED
|
@@ -35,10 +35,7 @@ def args_parser():
|
|
| 35 |
return parser
|
| 36 |
|
| 37 |
|
| 38 |
-
def main():
|
| 39 |
-
|
| 40 |
-
args = args_parser().parse_args()
|
| 41 |
-
|
| 42 |
config_path = f"{args.model_dir}/config.yaml"
|
| 43 |
model_onnx = f"{args.model_dir}/model.onnx"
|
| 44 |
|
|
@@ -59,9 +56,9 @@ def main():
|
|
| 59 |
with open(args.pair_indices, "r") as indices_file:
|
| 60 |
reader = csv.reader(indices_file)
|
| 61 |
# Process records
|
| 62 |
-
for df in tqdm(
|
| 63 |
-
records_df, reader, args.chunksize, args.processes
|
| 64 |
-
)
|
| 65 |
input_df = df[config["model"]["features"]]
|
| 66 |
prediction = predict_onnx(model_onnx, input_df)
|
| 67 |
df.loc[:, "prediction"] = prediction.squeeze()
|
|
@@ -74,6 +71,8 @@ def main():
|
|
| 74 |
written = True
|
| 75 |
else:
|
| 76 |
df.to_csv(args.output, index=False, mode="a", header=False)
|
| 77 |
-
|
|
|
|
| 78 |
if __name__ == "__main__":
|
| 79 |
-
|
|
|
|
|
|
| 35 |
return parser
|
| 36 |
|
| 37 |
|
| 38 |
+
def main(args):
|
|
|
|
|
|
|
|
|
|
| 39 |
config_path = f"{args.model_dir}/config.yaml"
|
| 40 |
model_onnx = f"{args.model_dir}/model.onnx"
|
| 41 |
|
|
|
|
| 56 |
with open(args.pair_indices, "r") as indices_file:
|
| 57 |
reader = csv.reader(indices_file)
|
| 58 |
# Process records
|
| 59 |
+
for df in tqdm(
|
| 60 |
+
multiprocess_pairs(records_df, reader, args.chunksize, args.processes)
|
| 61 |
+
):
|
| 62 |
input_df = df[config["model"]["features"]]
|
| 63 |
prediction = predict_onnx(model_onnx, input_df)
|
| 64 |
df.loc[:, "prediction"] = prediction.squeeze()
|
|
|
|
| 71 |
written = True
|
| 72 |
else:
|
| 73 |
df.to_csv(args.output, index=False, mode="a", header=False)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
if __name__ == "__main__":
|
| 77 |
+
args = args_parser().parse_args()
|
| 78 |
+
main(args)
|
marcai/predict.py
CHANGED
|
@@ -44,10 +44,7 @@ def args_parser():
|
|
| 44 |
return parser
|
| 45 |
|
| 46 |
|
| 47 |
-
def main():
|
| 48 |
-
|
| 49 |
-
args = args_parser().parse_args()
|
| 50 |
-
|
| 51 |
config_path = f"{args.model_dir}/config.yaml"
|
| 52 |
model_onnx = f"{args.model_dir}/model.onnx"
|
| 53 |
|
|
@@ -75,4 +72,5 @@ def main():
|
|
| 75 |
|
| 76 |
|
| 77 |
if __name__ == "__main__":
|
| 78 |
-
|
|
|
|
|
|
| 44 |
return parser
|
| 45 |
|
| 46 |
|
| 47 |
+
def main(args):
|
|
|
|
|
|
|
|
|
|
| 48 |
config_path = f"{args.model_dir}/config.yaml"
|
| 49 |
model_onnx = f"{args.model_dir}/model.onnx"
|
| 50 |
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|
| 75 |
+
args = args_parser().parse_args()
|
| 76 |
+
main(args)
|
marcai/process.py
CHANGED
|
@@ -47,7 +47,7 @@ def multiprocess_pairs(
|
|
| 47 |
|
| 48 |
for future in done:
|
| 49 |
# Get job's output
|
| 50 |
-
df
|
| 51 |
|
| 52 |
# Yield output
|
| 53 |
yield df
|
|
@@ -58,7 +58,7 @@ def multiprocess_pairs(
|
|
| 58 |
|
| 59 |
if pairs_chunk is None:
|
| 60 |
break
|
| 61 |
-
|
| 62 |
indices = np.array(pairs_chunk).astype(int)
|
| 63 |
|
| 64 |
left_indices = indices[:, 0]
|
|
@@ -127,11 +127,7 @@ def process(df0, df1):
|
|
| 127 |
result_df["author"] = comps.maximum(authors, null_value=0.5)
|
| 128 |
|
| 129 |
# Weighted title comparison
|
| 130 |
-
weights = {
|
| 131 |
-
"title_a": 1,
|
| 132 |
-
"raw": 0,
|
| 133 |
-
"title_p": 1
|
| 134 |
-
}
|
| 135 |
|
| 136 |
result_df["title_agg"] = comps.column_aggregate_similarity(
|
| 137 |
df0[weights.keys()], df1[weights.keys()], weights.values(), null_value=0
|
|
@@ -142,8 +138,6 @@ def process(df0, df1):
|
|
| 142 |
df0["title"], df1["title"], null_value=0.5
|
| 143 |
)
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
# Token set similarity
|
| 148 |
result_df["title_tokenset"] = comps.token_set_similarity(
|
| 149 |
df0["title"], df1["title"], null_value=0
|
|
@@ -220,10 +214,8 @@ def args_parser():
|
|
| 220 |
return parser
|
| 221 |
|
| 222 |
|
| 223 |
-
def main():
|
| 224 |
-
|
| 225 |
start = time.time()
|
| 226 |
-
args = args_parser().parse_args()
|
| 227 |
|
| 228 |
# Load records
|
| 229 |
print("Loading records...")
|
|
@@ -258,4 +250,5 @@ def main():
|
|
| 258 |
|
| 259 |
|
| 260 |
if __name__ == "__main__":
|
| 261 |
-
|
|
|
|
|
|
| 47 |
|
| 48 |
for future in done:
|
| 49 |
# Get job's output
|
| 50 |
+
df = future.result()
|
| 51 |
|
| 52 |
# Yield output
|
| 53 |
yield df
|
|
|
|
| 58 |
|
| 59 |
if pairs_chunk is None:
|
| 60 |
break
|
| 61 |
+
|
| 62 |
indices = np.array(pairs_chunk).astype(int)
|
| 63 |
|
| 64 |
left_indices = indices[:, 0]
|
|
|
|
| 127 |
result_df["author"] = comps.maximum(authors, null_value=0.5)
|
| 128 |
|
| 129 |
# Weighted title comparison
|
| 130 |
+
weights = {"title_a": 1, "raw": 0, "title_p": 1}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
result_df["title_agg"] = comps.column_aggregate_similarity(
|
| 133 |
df0[weights.keys()], df1[weights.keys()], weights.values(), null_value=0
|
|
|
|
| 138 |
df0["title"], df1["title"], null_value=0.5
|
| 139 |
)
|
| 140 |
|
|
|
|
|
|
|
| 141 |
# Token set similarity
|
| 142 |
result_df["title_tokenset"] = comps.token_set_similarity(
|
| 143 |
df0["title"], df1["title"], null_value=0
|
|
|
|
| 214 |
return parser
|
| 215 |
|
| 216 |
|
| 217 |
+
def main(args):
|
|
|
|
| 218 |
start = time.time()
|
|
|
|
| 219 |
|
| 220 |
# Load records
|
| 221 |
print("Loading records...")
|
|
|
|
| 250 |
|
| 251 |
|
| 252 |
if __name__ == "__main__":
|
| 253 |
+
args = args_parser().parse_args()
|
| 254 |
+
main(args)
|
marcai/train.py
CHANGED
|
@@ -93,12 +93,11 @@ def args_parser():
|
|
| 93 |
parser.add_argument("-n", "--run-name", help="Name for training run", required=True)
|
| 94 |
return parser
|
| 95 |
|
| 96 |
-
def main():
|
| 97 |
-
|
| 98 |
-
args = args_parser().parse_args()
|
| 99 |
|
|
|
|
| 100 |
train(args.run_name)
|
| 101 |
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
-
|
|
|
|
|
|
| 93 |
parser.add_argument("-n", "--run-name", help="Name for training run", required=True)
|
| 94 |
return parser
|
| 95 |
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
def main(args):
|
| 98 |
train(args.run_name)
|
| 99 |
|
| 100 |
|
| 101 |
if __name__ == "__main__":
|
| 102 |
+
args = args_parser().parse_args()
|
| 103 |
+
main(args)
|