File size: 16,398 Bytes
b3e3307 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
#!/usr/bin/env python3
"""
Mistral Model Transformer
This script transforms Mistral-Small-3.1-24B-Base-2503 into a text-only model by:
1. Removing multimodality features
2. Removing the vision encoder
3. Changing the architecture from "mistral3" to "mistral"
4. Ensuring weight mapping structure matches Devstral-Small-2505 exactly
Usage:
python convert.py --input-model mistralai/Mistral-Small-3.1-24B-Base-2503 --output-path ./mistral-small-text-only --reference-model mistralai/Devstral-Small-2505
Note:
This script requires significant disk space to download and process the full model.
"""
import argparse
import json
import os
import shutil
from pathlib import Path
import logging
from huggingface_hub import snapshot_download, hf_hub_download
from safetensors.torch import load_file, save_file
from transformers import AutoConfig, AutoModelForCausalLM
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Transform Mistral model to text-only version")
parser.add_argument(
"--input-model",
type=str,
default="mistralai/Mistral-Small-3.1-24B-Base-2503",
help="Path or HF repo id of the input model"
)
parser.add_argument(
"--output-path",
type=str,
required=True,
help="Path to save the transformed model"
)
parser.add_argument(
"--cache-dir",
type=str,
default=None,
help="Cache directory for downloading models"
)
parser.add_argument(
"--reference-model",
type=str,
default="mistralai/Devstral-Small-2505",
help="Path or HF repo id of the reference model for weight mapping"
)
return parser.parse_args()
def transform_config(config_path, output_path, reference_config=None):
"""
Transform the model config by:
1. Changing model_type from "mistral3" to "mistral"
2. Removing vision_config
3. Removing multimodal parameters
4. Updating architectures to match Devstral exactly
5. Ensuring all parameters match Devstral's config exactly
"""
logger.info(f"Transforming config at {config_path}")
with open(config_path, "r") as f:
config = json.load(f)
if reference_config:
logger.info("Using reference config as template")
new_config = reference_config.copy()
text_config = config.get("text_config", config)
for key, value in text_config.items():
if key not in new_config and key != "model_type":
new_config[key] = value
logger.info(f"Added parameter from original config: {key}")
else:
logger.info("No reference config available, using basic transformation")
new_config = config.copy()
# Change model_type from mistral3 to mistral
if new_config.get("model_type") == "mistral3":
new_config["model_type"] = "mistral"
logger.info("Changed model_type from 'mistral3' to 'mistral'")
# Update architectures to use MistralForCausalLM
if "architectures" in new_config:
new_config["architectures"] = ["MistralForCausalLM"]
logger.info("Changed architecture to 'MistralForCausalLM'")
# Remove vision_config
if "vision_config" in new_config:
del new_config["vision_config"]
logger.info("Removed vision_config")
# Remove multimodal-related parameters
multimodal_params = [
"image_token_index",
"multimodal_projector_bias",
"projector_hidden_act",
"spatial_merge_size",
"vision_tower_layer_list",
"vision_feature_layer"
]
for param in multimodal_params:
if param in new_config:
del new_config[param]
logger.info(f"Removed multimodal parameter: {param}")
if "text_config" in new_config:
text_config = new_config.pop("text_config")
for key, value in text_config.items():
if key != "model_type": # Don't overwrite the model_type
new_config[key] = value
logger.info("Moved text_config parameters to top level")
if "bos_token_id" not in new_config:
new_config["bos_token_id"] = 1
logger.info("Added bos_token_id: 1")
if "eos_token_id" not in new_config:
new_config["eos_token_id"] = 2
logger.info("Added eos_token_id: 2")
if "tie_word_embeddings" not in new_config:
new_config["tie_word_embeddings"] = False
logger.info("Added tie_word_embeddings: false")
new_config["transformers_version"] = "4.51.3"
logger.info("Updated transformers_version to 4.51.3")
os_output_path = Path(output_path) / "config.json"
with open(os_output_path, "w") as f:
json.dump(new_config, f, indent=2)
logger.info(f"Saved transformed config to {os_output_path}")
return new_config
def is_vision_weight(weight_name):
"""Check if a weight is related to vision functionality"""
vision_patterns = ["vision_tower", "multi_modal_projector"]
return any(pattern in weight_name for pattern in vision_patterns)
def transform_weights(model_path, output_path, safetensors_index_path, reference_weight_map=None):
"""
Transform model weights by:
1. Loading the weight map from safetensors index
2. Filtering out vision-related weights
3. Removing the "language_model." prefix from weight names
4. Ensuring the exact same partitioning as Devstral
5. Saving the filtered weights to the output path
"""
logger.info(f"Transforming weights using index at {safetensors_index_path}")
with open(safetensors_index_path, "r") as f:
index_data = json.load(f)
original_weight_map = index_data.get("weight_map", {})
# Count vision and non-vision weights
vision_weights = [name for name in original_weight_map if is_vision_weight(name)]
non_vision_weights = [name for name in original_weight_map if not is_vision_weight(name)]
logger.info(f"Found {len(vision_weights)} vision-related weights to remove")
logger.info(f"Found {len(non_vision_weights)} non-vision weights to keep")
# Create a mapping from original weight names to Devstral-style weight names
weight_name_mapping = {}
for original_name in non_vision_weights:
if original_name.startswith("language_model."):
new_name = original_name[len("language_model."):]
weight_name_mapping[original_name] = new_name
else:
weight_name_mapping[original_name] = original_name
logger.info(f"Created mapping for {len(weight_name_mapping)} weight names")
new_weight_map = {}
if reference_weight_map and "weight_map" in reference_weight_map:
devstral_weight_map = reference_weight_map["weight_map"]
logger.info(f"Using Devstral reference weight map with {len(devstral_weight_map)} entries")
for original_name, new_name in weight_name_mapping.items():
if new_name in devstral_weight_map:
new_weight_map[new_name] = devstral_weight_map[new_name]
else:
logger.warning(f"Weight {new_name} not found in Devstral reference map")
else:
logger.warning("No Devstral reference map available, using original partitioning")
for original_name, new_name in weight_name_mapping.items():
new_weight_map[new_name] = original_weight_map[original_name]
# Group weights by their safetensor file for the actual transformation
file_to_weights = {}
for new_name, file_name in new_weight_map.items():
if file_name not in file_to_weights:
file_to_weights[file_name] = []
original_names = [orig for orig, new in weight_name_mapping.items() if new == new_name]
if original_names:
file_to_weights[file_name].append((original_names[0], new_name))
os.makedirs(Path(output_path), exist_ok=True)
# Process each safetensor file
for file_name, weight_pairs in file_to_weights.items():
logger.info(f"Processing {file_name} with {len(weight_pairs)} weights")
tensors_to_save = {}
for original_name, new_name in weight_pairs:
original_file = original_weight_map.get(original_name)
if not original_file:
logger.warning(f"Original file not found for weight {original_name}")
continue
input_file_path = Path(model_path) / original_file
if not input_file_path.exists():
logger.warning(f"File {input_file_path} does not exist, skipping")
continue
try:
original_tensors = load_file(input_file_path)
if original_name in original_tensors:
tensors_to_save[new_name] = original_tensors[original_name]
else:
logger.warning(f"Weight {original_name} not found in {original_file}")
except Exception as e:
logger.error(f"Error loading {original_file}: {e}")
if tensors_to_save:
output_file_path = Path(output_path) / file_name
try:
save_file(tensors_to_save, output_file_path)
logger.info(f"Saved {len(tensors_to_save)} weights to {file_name}")
except Exception as e:
logger.error(f"Error saving {file_name}: {e}")
# Save the new safetensors index
new_index = {
"metadata": {"total_size": reference_weight_map.get("metadata", {}).get("total_size", 0)}
if reference_weight_map else index_data.get("metadata", {}),
"weight_map": new_weight_map
}
output_index_path = Path(output_path) / "model.safetensors.index.json"
with open(output_index_path, "w") as f:
json.dump(new_index, f, indent=2)
logger.info(f"Saved transformed safetensors index to {output_index_path}")
def copy_additional_files(model_path, output_path):
"""Copy additional model files like tokenizer, generation config, etc."""
additional_files = [
"tokenizer.json",
"tokenizer_config.json",
"special_tokens_map.json",
"generation_config.json"
]
for filename in additional_files:
src_path = Path(model_path) / filename
if src_path.exists():
dst_path = Path(output_path) / filename
shutil.copy(src_path, dst_path)
logger.info(f"Copied {filename} to output directory")
else:
logger.warning(f"File {filename} not found in model directory")
def download_minimal_files(repo_id, output_dir, cache_dir=None):
"""Download only the necessary files for transformation without the full model"""
logger.info(f"Downloading minimal files from {repo_id}")
# List of files to download
files_to_download = [
"config.json",
"model.safetensors.index.json",
"tokenizer_config.json",
"special_tokens_map.json",
"generation_config.json"
]
downloaded_files = {}
for filename in files_to_download:
try:
file_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=cache_dir,
local_files_only=False
)
downloaded_files[filename] = file_path
logger.info(f"Downloaded {filename} to {file_path}")
except Exception as e:
logger.warning(f"Failed to download {filename}: {e}")
return downloaded_files
def download_reference_weight_map(reference_model, cache_dir=None):
"""Download reference model's weight map to use as a reference"""
logger.info(f"Downloading reference weight map from {reference_model}")
try:
file_path = hf_hub_download(
repo_id=reference_model,
filename="model.safetensors.index.json",
cache_dir=cache_dir,
local_files_only=False
)
with open(file_path, "r") as f:
reference_map = json.load(f)
logger.info(f"Successfully loaded reference weight map with {len(reference_map.get('weight_map', {}))} weights")
return reference_map
except Exception as e:
logger.error(f"Failed to download reference weight map: {e}")
return None
def download_reference_config(reference_model, cache_dir=None):
"""Download reference model's config.json to use as a reference"""
logger.info(f"Downloading reference config from {reference_model}")
try:
file_path = hf_hub_download(
repo_id=reference_model,
filename="config.json",
cache_dir=cache_dir,
local_files_only=False
)
with open(file_path, "r") as f:
reference_config = json.load(f)
logger.info(f"Successfully loaded reference config")
return reference_config
except Exception as e:
logger.error(f"Failed to download reference config: {e}")
return None
def verify_model(output_path):
"""Verify that the transformed model can be loaded without errors"""
logger.info(f"Verifying transformed model at {output_path}")
try:
config = AutoConfig.from_pretrained(output_path)
logger.info(f"Successfully loaded config with model_type={config.model_type}")
# Attempt to load just the model architecture (without weights)
# This verifies the configuration is valid
AutoModelForCausalLM.from_config(config)
logger.info("Successfully loaded model architecture from config")
return True
except Exception as e:
logger.error(f"Error verifying model: {e}")
return False
def main():
args = parse_args()
input_model = args.input_model
output_path = args.output_path
cache_dir = args.cache_dir
reference_model = args.reference_model
# Download reference weight map and config
reference_weight_map = download_reference_weight_map(reference_model, cache_dir)
if not reference_weight_map:
logger.warning("Could not download reference weight map. The weight partitioning may not match exactly.")
reference_config = download_reference_config(reference_model, cache_dir)
if not reference_config:
logger.warning("Could not download reference config. The config may not match exactly.")
# Create output directory
os.makedirs(output_path, exist_ok=True)
# Download the full model
if not os.path.exists(input_model) or not os.path.isdir(input_model):
logger.info(f"Downloading model from {input_model}")
try:
model_path = snapshot_download(
repo_id=input_model,
cache_dir=cache_dir,
local_files_only=False,
ignore_patterns=["*consolidated*"]
)
except Exception as e:
logger.error(f"Error downloading model: {e}")
return
else:
model_path = input_model
logger.info(f"Model path: {model_path}")
# Transform config
config_path = os.path.join(model_path, "config.json")
transform_config(config_path, output_path, reference_config)
# Transform weights
safetensors_index_path = os.path.join(model_path, "model.safetensors.index.json")
transform_weights(
model_path,
output_path,
safetensors_index_path,
reference_weight_map=reference_weight_map
)
# Copy additional files
copy_additional_files(model_path, output_path)
# Verify the transformed model
success = verify_model(output_path)
if success:
logger.info(f"Successfully transformed model to {output_path}")
else:
logger.error(f"Failed to transform model properly")
if __name__ == "__main__":
main()
|