TheFireHacker commited on
Commit
ceea8dc
·
verified ·
1 Parent(s): edb0443

first update to readme

Browse files
Files changed (1) hide show
  1. README.md +139 -3
README.md CHANGED
@@ -1,3 +1,139 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/Phi-4-multimodal-instruct
4
+ quantization_method: bitsandbytes
5
+ quantization_config:
6
+ load_in_4bit: true
7
+ bnb_4bit_quant_type: nf4
8
+ bnb_4bit_compute_dtype: torch.bfloat16
9
+ bnb_4bit_use_double_quant: true
10
+ tags:
11
+ - phi
12
+ - phi-4
13
+ - phi-4-multimodal
14
+ - multimodal
15
+ - quantized
16
+ - 4bit
17
+ - bitsandbytes
18
+ - bubblspace
19
+ ---
20
+
21
+ # Bubbl-P4-multimodal-instruct (4-bit Quantized)
22
+
23
+ This repository contains a 4-bit quantized version of the `microsoft/Phi-4-multimodal-instruct` model.
24
+
25
+ Quantization was performed using the `bitsandbytes` library integrated with `transformers`.
26
+
27
+ ## Model Description
28
+
29
+ * **Original Model:** [microsoft/Phi-4-multimodal-instruct](https://huggingface.co/microsoft/Phi-4-multimodal-instruct)
30
+ * **Quantization Method:** `bitsandbytes` Post-Training Quantization (PTQ)
31
+ * **Precision:** 4-bit
32
+ * **Quantization Config:**
33
+ * `load_in_4bit=True`
34
+ * `bnb_4bit_quant_type="nf4"` (NormalFloat 4-bit)
35
+ * `bnb_4bit_compute_dtype=torch.bfloat16` (Computation performed in BF16 for compatible GPUs like A100)
36
+ * `bnb_4bit_use_double_quant=True` (Enables nested quantization for potentially more memory savings)
37
+
38
+ This version was created to provide the capabilities of Phi-4-multimodal with a significantly reduced memory footprint, making it suitable for deployment on GPUs with lower VRAM.
39
+
40
+ ## Intended Use
41
+
42
+ This quantized model is primarily intended for scenarios where VRAM resources are constrained, but the advanced multimodal reasoning, language understanding, and instruction-following capabilities of `Phi-4-multimodal-instruct` are desired.
43
+
44
+ Refer to the [original model card](https://huggingface.co/microsoft/Phi-4-multimodal-instruct) for the full range of intended uses and capabilities of the base model.
45
+
46
+ ## How to Use
47
+
48
+ You can load this 4-bit quantized model directly using the `transformers` library. Ensure you have `bitsandbytes` and `accelerate` installed (`pip install transformers bitsandbytes accelerate torch torchvision pillow soundfile scipy sentencepiece protobuf`).
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoProcessor
52
+ import torch
53
+
54
+ model_id = "bubblspace/Bubbl-P4-multimodal-instruct"
55
+
56
+ # Load the processor (requires trust_remote_code)
57
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
58
+
59
+ # Load the model with 4-bit quantization enabled
60
+ # The quantization config is loaded automatically from the model's config file
61
+ model = AutoModelForCausalLM.from_pretrained(
62
+ model_id,
63
+ trust_remote_code=True, # Essential for Phi-4 models
64
+ load_in_4bit=True, # Explicitly activate 4-bit loading (though config should handle it)
65
+ device_map="auto" # Automatically map model layers to available GPU(s)
66
+ # torch_dtype=torch.bfloat16 # Often not needed here as bnb_4bit_compute_dtype is handled
67
+ )
68
+
69
+ print("4-bit quantized model loaded successfully!")
70
+
71
+ # --- Example: Text Inference ---
72
+ prompt = "<|user|>\nExplain the benefits of model quantization.<|end|>\n<|assistant|>"
73
+ inputs = processor(text=prompt, return_tensors="pt").to(model.device)
74
+
75
+ outputs = model.generate(**inputs, max_new_tokens=150)
76
+ response_text = processor.batch_decode(outputs)[0]
77
+ print(response_text)
78
+
79
+ # --- Example: Image Inference Placeholder ---
80
+ # from PIL import Image
81
+ # import requests
82
+ # url = "your_image_url.jpg"
83
+ # image = Image.open(requests.get(url, stream=True).raw)
84
+ # image_prompt = "<|user|>\n<|image_1|>\nDescribe this image.<|end|>\n<|assistant|>"
85
+ # inputs = processor(text=image_prompt, images=image, return_tensors="pt").to(model.device)
86
+ # outputs = model.generate(**inputs, max_new_tokens=100)
87
+ # response_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
88
+ # print(response_text)
89
+
90
+ # --- Example: Audio Inference Placeholder ---
91
+ # import soundfile as sf
92
+ # audio_path = "your_audio.wav"
93
+ # audio_array, sampling_rate = sf.read(audio_path)
94
+ # audio_prompt = "<|user|>\n<|audio_1|>\nTranscribe this audio.<|end|>\n<|assistant|>"
95
+ # inputs = processor(text=audio_prompt, audios=[(audio_array, sampling_rate)], return_tensors="pt").to(model.device)
96
+ # # ... generate and decode ...
97
+
98
+ ```
99
+
100
+ **Important:** Remember to always pass `trust_remote_code=True` when loading both the processor and the model for Phi-4 architectures.
101
+
102
+ ## Hardware Requirements
103
+
104
+ * Requires a CUDA-enabled GPU.
105
+ * The 4-bit quantization significantly reduces VRAM requirements compared to the original BF16 model (approx. 11-12GB). This version should fit comfortably on GPUs with ~10GB VRAM, and potentially less depending on context length and batch size (evaluation recommended).
106
+ * Performance gains (inference speed) compared to the original are most noticeable on GPUs that efficiently handle lower-precision operations (e.g., NVIDIA Ampere, Ada Lovelace series like A100, L4, RTX 30/40xx).
107
+
108
+ ## Limitations and Considerations
109
+
110
+ * **Potential Accuracy Impact:** While 4-bit quantization aims to preserve performance, there might be a slight degradation in accuracy compared to the original BF16 model. Users should evaluate the model's performance on their specific tasks to ensure the trade-off is acceptable.
111
+ * **Inference Speed:** Memory usage is significantly reduced. Inference speed may or may not be faster than the original BF16 model; it depends heavily on the hardware, batch size, sequence length, and specific implementation details. Test on your target hardware.
112
+ * **Multimodal Evaluation:** Quantization primarily affects the model weights. Thorough evaluation on specific vision and audio tasks is recommended to confirm performance characteristics for multimodal use cases.
113
+ * **Inherited Limitations:** This model inherits the limitations, biases, and safety considerations of the original `microsoft/Phi-4-multimodal-instruct` model. Please refer to its model card for detailed information on responsible AI practices.
114
+
115
+ ## License
116
+
117
+ The model is licensed under the [MIT License](LICENSE), consistent with the original `microsoft/Phi-4-multimodal-instruct` model.
118
+
119
+ ## Citation
120
+
121
+ Please cite the original work if you use this model:
122
+
123
+ ```bibtex
124
+ @misc{phi4multimodal2025,
125
+ title={Phi-4-multimodal: A Compact Multimodal Model for Recommendation, Recognition, and Reasoning},
126
+ author={Microsoft},
127
+ year={2025},
128
+ eprint={2503.01743},
129
+ archivePrefix={arXiv},
130
+ primaryClass={cs.CL}
131
+ }
132
+ ```
133
+
134
+ ```
135
+
136
+ Additionally, if you use this specific 4-bit quantized version, please acknowledge **Bubblspace** ([bubblspace.com](https://bubblspace.com)) and **AIEDX** ([aiedx.com](https://aiedx.com)) for providing this quantized model. You could add a note such as:
137
+
138
+ > *"We used the 4-bit quantized version of Phi-4-multimodal-instruct provided by Bubblspace/AIEDX, available at huggingface.co/bubblspace/Bubbl-P4-multimodal-instruct."*
139
+