Delete models/isnet.py
Browse files- models/isnet.py +0 -611
models/isnet.py
DELETED
|
@@ -1,611 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
from torchvision import models
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
bce_loss = nn.BCELoss(size_average=True)
|
| 8 |
-
def muti_loss_fusion(preds, target):
|
| 9 |
-
loss0 = 0.0
|
| 10 |
-
loss = 0.0
|
| 11 |
-
|
| 12 |
-
for i in range(0,len(preds)):
|
| 13 |
-
# print("i: ", i, preds[i].shape)
|
| 14 |
-
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
| 15 |
-
# tmp_target = _upsample_like(target,preds[i])
|
| 16 |
-
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
| 17 |
-
loss = loss + bce_loss(preds[i],tmp_target)
|
| 18 |
-
else:
|
| 19 |
-
loss = loss + bce_loss(preds[i],target)
|
| 20 |
-
if(i==0):
|
| 21 |
-
loss0 = loss
|
| 22 |
-
return loss0, loss
|
| 23 |
-
|
| 24 |
-
fea_loss = nn.MSELoss(size_average=True)
|
| 25 |
-
kl_loss = nn.KLDivLoss(size_average=True)
|
| 26 |
-
l1_loss = nn.L1Loss(size_average=True)
|
| 27 |
-
smooth_l1_loss = nn.SmoothL1Loss(size_average=True)
|
| 28 |
-
def muti_loss_fusion_kl(preds, target, dfs, fs, mode='MSE'):
|
| 29 |
-
loss0 = 0.0
|
| 30 |
-
loss = 0.0
|
| 31 |
-
|
| 32 |
-
for i in range(0,len(preds)):
|
| 33 |
-
# print("i: ", i, preds[i].shape)
|
| 34 |
-
if(preds[i].shape[2]!=target.shape[2] or preds[i].shape[3]!=target.shape[3]):
|
| 35 |
-
# tmp_target = _upsample_like(target,preds[i])
|
| 36 |
-
tmp_target = F.interpolate(target, size=preds[i].size()[2:], mode='bilinear', align_corners=True)
|
| 37 |
-
loss = loss + bce_loss(preds[i],tmp_target)
|
| 38 |
-
else:
|
| 39 |
-
loss = loss + bce_loss(preds[i],target)
|
| 40 |
-
if(i==0):
|
| 41 |
-
loss0 = loss
|
| 42 |
-
|
| 43 |
-
for i in range(0,len(dfs)):
|
| 44 |
-
if(mode=='MSE'):
|
| 45 |
-
loss = loss + fea_loss(dfs[i],fs[i]) ### add the mse loss of features as additional constraints
|
| 46 |
-
# print("fea_loss: ", fea_loss(dfs[i],fs[i]).item())
|
| 47 |
-
elif(mode=='KL'):
|
| 48 |
-
loss = loss + kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1))
|
| 49 |
-
# print("kl_loss: ", kl_loss(F.log_softmax(dfs[i],dim=1),F.softmax(fs[i],dim=1)).item())
|
| 50 |
-
elif(mode=='MAE'):
|
| 51 |
-
loss = loss + l1_loss(dfs[i],fs[i])
|
| 52 |
-
# print("ls_loss: ", l1_loss(dfs[i],fs[i]))
|
| 53 |
-
elif(mode=='SmoothL1'):
|
| 54 |
-
loss = loss + smooth_l1_loss(dfs[i],fs[i])
|
| 55 |
-
# print("SmoothL1: ", smooth_l1_loss(dfs[i],fs[i]).item())
|
| 56 |
-
|
| 57 |
-
return loss0, loss
|
| 58 |
-
|
| 59 |
-
class REBNCONV(nn.Module):
|
| 60 |
-
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
| 61 |
-
super(REBNCONV,self).__init__()
|
| 62 |
-
|
| 63 |
-
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
| 64 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
| 65 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
| 66 |
-
|
| 67 |
-
def forward(self,x):
|
| 68 |
-
|
| 69 |
-
hx = x
|
| 70 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
| 71 |
-
|
| 72 |
-
return xout
|
| 73 |
-
|
| 74 |
-
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
| 75 |
-
def _upsample_like(src,tar):
|
| 76 |
-
|
| 77 |
-
src = F.upsample(src,size=tar.shape[2:],mode='bilinear')
|
| 78 |
-
|
| 79 |
-
return src
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
### RSU-7 ###
|
| 83 |
-
class RSU7(nn.Module):
|
| 84 |
-
|
| 85 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
| 86 |
-
super(RSU7,self).__init__()
|
| 87 |
-
|
| 88 |
-
self.in_ch = in_ch
|
| 89 |
-
self.mid_ch = mid_ch
|
| 90 |
-
self.out_ch = out_ch
|
| 91 |
-
|
| 92 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
| 93 |
-
|
| 94 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 95 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 96 |
-
|
| 97 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 98 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 99 |
-
|
| 100 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 101 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 102 |
-
|
| 103 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 104 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 105 |
-
|
| 106 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 107 |
-
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 108 |
-
|
| 109 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 110 |
-
|
| 111 |
-
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 112 |
-
|
| 113 |
-
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 114 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 115 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 116 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 117 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 118 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 119 |
-
|
| 120 |
-
def forward(self,x):
|
| 121 |
-
b, c, h, w = x.shape
|
| 122 |
-
|
| 123 |
-
hx = x
|
| 124 |
-
hxin = self.rebnconvin(hx)
|
| 125 |
-
|
| 126 |
-
hx1 = self.rebnconv1(hxin)
|
| 127 |
-
hx = self.pool1(hx1)
|
| 128 |
-
|
| 129 |
-
hx2 = self.rebnconv2(hx)
|
| 130 |
-
hx = self.pool2(hx2)
|
| 131 |
-
|
| 132 |
-
hx3 = self.rebnconv3(hx)
|
| 133 |
-
hx = self.pool3(hx3)
|
| 134 |
-
|
| 135 |
-
hx4 = self.rebnconv4(hx)
|
| 136 |
-
hx = self.pool4(hx4)
|
| 137 |
-
|
| 138 |
-
hx5 = self.rebnconv5(hx)
|
| 139 |
-
hx = self.pool5(hx5)
|
| 140 |
-
|
| 141 |
-
hx6 = self.rebnconv6(hx)
|
| 142 |
-
|
| 143 |
-
hx7 = self.rebnconv7(hx6)
|
| 144 |
-
|
| 145 |
-
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
| 146 |
-
hx6dup = _upsample_like(hx6d,hx5)
|
| 147 |
-
|
| 148 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
| 149 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
| 150 |
-
|
| 151 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 152 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
| 153 |
-
|
| 154 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 155 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
| 156 |
-
|
| 157 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 158 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
| 159 |
-
|
| 160 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 161 |
-
|
| 162 |
-
return hx1d + hxin
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
### RSU-6 ###
|
| 166 |
-
class RSU6(nn.Module):
|
| 167 |
-
|
| 168 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 169 |
-
super(RSU6,self).__init__()
|
| 170 |
-
|
| 171 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 172 |
-
|
| 173 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 174 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 175 |
-
|
| 176 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 177 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 178 |
-
|
| 179 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 180 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 181 |
-
|
| 182 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 183 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 184 |
-
|
| 185 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 186 |
-
|
| 187 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 188 |
-
|
| 189 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 190 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 191 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 192 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 193 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 194 |
-
|
| 195 |
-
def forward(self,x):
|
| 196 |
-
|
| 197 |
-
hx = x
|
| 198 |
-
|
| 199 |
-
hxin = self.rebnconvin(hx)
|
| 200 |
-
|
| 201 |
-
hx1 = self.rebnconv1(hxin)
|
| 202 |
-
hx = self.pool1(hx1)
|
| 203 |
-
|
| 204 |
-
hx2 = self.rebnconv2(hx)
|
| 205 |
-
hx = self.pool2(hx2)
|
| 206 |
-
|
| 207 |
-
hx3 = self.rebnconv3(hx)
|
| 208 |
-
hx = self.pool3(hx3)
|
| 209 |
-
|
| 210 |
-
hx4 = self.rebnconv4(hx)
|
| 211 |
-
hx = self.pool4(hx4)
|
| 212 |
-
|
| 213 |
-
hx5 = self.rebnconv5(hx)
|
| 214 |
-
|
| 215 |
-
hx6 = self.rebnconv6(hx5)
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
| 219 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
| 220 |
-
|
| 221 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
| 222 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
| 223 |
-
|
| 224 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 225 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
| 226 |
-
|
| 227 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 228 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
| 229 |
-
|
| 230 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 231 |
-
|
| 232 |
-
return hx1d + hxin
|
| 233 |
-
|
| 234 |
-
### RSU-5 ###
|
| 235 |
-
class RSU5(nn.Module):
|
| 236 |
-
|
| 237 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 238 |
-
super(RSU5,self).__init__()
|
| 239 |
-
|
| 240 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 241 |
-
|
| 242 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 243 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 244 |
-
|
| 245 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 246 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 247 |
-
|
| 248 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 249 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 250 |
-
|
| 251 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 252 |
-
|
| 253 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 254 |
-
|
| 255 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 256 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 257 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 258 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 259 |
-
|
| 260 |
-
def forward(self,x):
|
| 261 |
-
|
| 262 |
-
hx = x
|
| 263 |
-
|
| 264 |
-
hxin = self.rebnconvin(hx)
|
| 265 |
-
|
| 266 |
-
hx1 = self.rebnconv1(hxin)
|
| 267 |
-
hx = self.pool1(hx1)
|
| 268 |
-
|
| 269 |
-
hx2 = self.rebnconv2(hx)
|
| 270 |
-
hx = self.pool2(hx2)
|
| 271 |
-
|
| 272 |
-
hx3 = self.rebnconv3(hx)
|
| 273 |
-
hx = self.pool3(hx3)
|
| 274 |
-
|
| 275 |
-
hx4 = self.rebnconv4(hx)
|
| 276 |
-
|
| 277 |
-
hx5 = self.rebnconv5(hx4)
|
| 278 |
-
|
| 279 |
-
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
| 280 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
| 281 |
-
|
| 282 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
| 283 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
| 284 |
-
|
| 285 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 286 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
| 287 |
-
|
| 288 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 289 |
-
|
| 290 |
-
return hx1d + hxin
|
| 291 |
-
|
| 292 |
-
### RSU-4 ###
|
| 293 |
-
class RSU4(nn.Module):
|
| 294 |
-
|
| 295 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 296 |
-
super(RSU4,self).__init__()
|
| 297 |
-
|
| 298 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 299 |
-
|
| 300 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 301 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 302 |
-
|
| 303 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 304 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 305 |
-
|
| 306 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
| 307 |
-
|
| 308 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 309 |
-
|
| 310 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 311 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
| 312 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 313 |
-
|
| 314 |
-
def forward(self,x):
|
| 315 |
-
|
| 316 |
-
hx = x
|
| 317 |
-
|
| 318 |
-
hxin = self.rebnconvin(hx)
|
| 319 |
-
|
| 320 |
-
hx1 = self.rebnconv1(hxin)
|
| 321 |
-
hx = self.pool1(hx1)
|
| 322 |
-
|
| 323 |
-
hx2 = self.rebnconv2(hx)
|
| 324 |
-
hx = self.pool2(hx2)
|
| 325 |
-
|
| 326 |
-
hx3 = self.rebnconv3(hx)
|
| 327 |
-
|
| 328 |
-
hx4 = self.rebnconv4(hx3)
|
| 329 |
-
|
| 330 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 331 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
| 332 |
-
|
| 333 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
| 334 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
| 335 |
-
|
| 336 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
| 337 |
-
|
| 338 |
-
return hx1d + hxin
|
| 339 |
-
|
| 340 |
-
### RSU-4F ###
|
| 341 |
-
class RSU4F(nn.Module):
|
| 342 |
-
|
| 343 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
| 344 |
-
super(RSU4F,self).__init__()
|
| 345 |
-
|
| 346 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
| 347 |
-
|
| 348 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
| 349 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
| 350 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
| 351 |
-
|
| 352 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
| 353 |
-
|
| 354 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
| 355 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
| 356 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
| 357 |
-
|
| 358 |
-
def forward(self,x):
|
| 359 |
-
|
| 360 |
-
hx = x
|
| 361 |
-
|
| 362 |
-
hxin = self.rebnconvin(hx)
|
| 363 |
-
|
| 364 |
-
hx1 = self.rebnconv1(hxin)
|
| 365 |
-
hx2 = self.rebnconv2(hx1)
|
| 366 |
-
hx3 = self.rebnconv3(hx2)
|
| 367 |
-
|
| 368 |
-
hx4 = self.rebnconv4(hx3)
|
| 369 |
-
|
| 370 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
| 371 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
| 372 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
| 373 |
-
|
| 374 |
-
return hx1d + hxin
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
class myrebnconv(nn.Module):
|
| 378 |
-
def __init__(self, in_ch=3,
|
| 379 |
-
out_ch=1,
|
| 380 |
-
kernel_size=3,
|
| 381 |
-
stride=1,
|
| 382 |
-
padding=1,
|
| 383 |
-
dilation=1,
|
| 384 |
-
groups=1):
|
| 385 |
-
super(myrebnconv,self).__init__()
|
| 386 |
-
|
| 387 |
-
self.conv = nn.Conv2d(in_ch,
|
| 388 |
-
out_ch,
|
| 389 |
-
kernel_size=kernel_size,
|
| 390 |
-
stride=stride,
|
| 391 |
-
padding=padding,
|
| 392 |
-
dilation=dilation,
|
| 393 |
-
groups=groups)
|
| 394 |
-
self.bn = nn.BatchNorm2d(out_ch)
|
| 395 |
-
self.rl = nn.ReLU(inplace=True)
|
| 396 |
-
|
| 397 |
-
def forward(self,x):
|
| 398 |
-
return self.rl(self.bn(self.conv(x)))
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
class ISNetGTEncoder(nn.Module):
|
| 402 |
-
|
| 403 |
-
def __init__(self,in_ch=1,out_ch=1):
|
| 404 |
-
super(ISNetGTEncoder,self).__init__()
|
| 405 |
-
|
| 406 |
-
self.conv_in = myrebnconv(in_ch,16,3,stride=2,padding=1) # nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 407 |
-
|
| 408 |
-
self.stage1 = RSU7(16,16,64)
|
| 409 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 410 |
-
|
| 411 |
-
self.stage2 = RSU6(64,16,64)
|
| 412 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 413 |
-
|
| 414 |
-
self.stage3 = RSU5(64,32,128)
|
| 415 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 416 |
-
|
| 417 |
-
self.stage4 = RSU4(128,32,256)
|
| 418 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 419 |
-
|
| 420 |
-
self.stage5 = RSU4F(256,64,512)
|
| 421 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 422 |
-
|
| 423 |
-
self.stage6 = RSU4F(512,64,512)
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 427 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 428 |
-
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
| 429 |
-
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
| 430 |
-
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 431 |
-
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 432 |
-
|
| 433 |
-
def compute_loss(self, preds, targets):
|
| 434 |
-
|
| 435 |
-
return muti_loss_fusion(preds,targets)
|
| 436 |
-
|
| 437 |
-
def forward(self,x):
|
| 438 |
-
|
| 439 |
-
hx = x
|
| 440 |
-
|
| 441 |
-
hxin = self.conv_in(hx)
|
| 442 |
-
# hx = self.pool_in(hxin)
|
| 443 |
-
|
| 444 |
-
#stage 1
|
| 445 |
-
hx1 = self.stage1(hxin)
|
| 446 |
-
hx = self.pool12(hx1)
|
| 447 |
-
|
| 448 |
-
#stage 2
|
| 449 |
-
hx2 = self.stage2(hx)
|
| 450 |
-
hx = self.pool23(hx2)
|
| 451 |
-
|
| 452 |
-
#stage 3
|
| 453 |
-
hx3 = self.stage3(hx)
|
| 454 |
-
hx = self.pool34(hx3)
|
| 455 |
-
|
| 456 |
-
#stage 4
|
| 457 |
-
hx4 = self.stage4(hx)
|
| 458 |
-
hx = self.pool45(hx4)
|
| 459 |
-
|
| 460 |
-
#stage 5
|
| 461 |
-
hx5 = self.stage5(hx)
|
| 462 |
-
hx = self.pool56(hx5)
|
| 463 |
-
|
| 464 |
-
#stage 6
|
| 465 |
-
hx6 = self.stage6(hx)
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
#side output
|
| 469 |
-
d1 = self.side1(hx1)
|
| 470 |
-
d1 = _upsample_like(d1,x)
|
| 471 |
-
|
| 472 |
-
d2 = self.side2(hx2)
|
| 473 |
-
d2 = _upsample_like(d2,x)
|
| 474 |
-
|
| 475 |
-
d3 = self.side3(hx3)
|
| 476 |
-
d3 = _upsample_like(d3,x)
|
| 477 |
-
|
| 478 |
-
d4 = self.side4(hx4)
|
| 479 |
-
d4 = _upsample_like(d4,x)
|
| 480 |
-
|
| 481 |
-
d5 = self.side5(hx5)
|
| 482 |
-
d5 = _upsample_like(d5,x)
|
| 483 |
-
|
| 484 |
-
d6 = self.side6(hx6)
|
| 485 |
-
d6 = _upsample_like(d6,x)
|
| 486 |
-
|
| 487 |
-
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
| 488 |
-
|
| 489 |
-
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)], [hx1,hx2,hx3,hx4,hx5,hx6]
|
| 490 |
-
|
| 491 |
-
class ISNetDIS(nn.Module):
|
| 492 |
-
|
| 493 |
-
def __init__(self,in_ch=3,out_ch=1):
|
| 494 |
-
super(ISNetDIS,self).__init__()
|
| 495 |
-
|
| 496 |
-
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
| 497 |
-
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 498 |
-
|
| 499 |
-
self.stage1 = RSU7(64,32,64)
|
| 500 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 501 |
-
|
| 502 |
-
self.stage2 = RSU6(64,32,128)
|
| 503 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 504 |
-
|
| 505 |
-
self.stage3 = RSU5(128,64,256)
|
| 506 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 507 |
-
|
| 508 |
-
self.stage4 = RSU4(256,128,512)
|
| 509 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 510 |
-
|
| 511 |
-
self.stage5 = RSU4F(512,256,512)
|
| 512 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
| 513 |
-
|
| 514 |
-
self.stage6 = RSU4F(512,256,512)
|
| 515 |
-
|
| 516 |
-
# decoder
|
| 517 |
-
self.stage5d = RSU4F(1024,256,512)
|
| 518 |
-
self.stage4d = RSU4(1024,128,256)
|
| 519 |
-
self.stage3d = RSU5(512,64,128)
|
| 520 |
-
self.stage2d = RSU6(256,32,64)
|
| 521 |
-
self.stage1d = RSU7(128,16,64)
|
| 522 |
-
|
| 523 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 524 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
| 525 |
-
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
| 526 |
-
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
| 527 |
-
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 528 |
-
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
| 529 |
-
|
| 530 |
-
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
| 531 |
-
|
| 532 |
-
def compute_loss_kl(self, preds, targets, dfs, fs, mode='MSE'):
|
| 533 |
-
|
| 534 |
-
# return muti_loss_fusion(preds,targets)
|
| 535 |
-
return muti_loss_fusion_kl(preds, targets, dfs, fs, mode=mode)
|
| 536 |
-
|
| 537 |
-
def compute_loss(self, preds, targets):
|
| 538 |
-
|
| 539 |
-
# return muti_loss_fusion(preds,targets)
|
| 540 |
-
return muti_loss_fusion(preds, targets)
|
| 541 |
-
|
| 542 |
-
def forward(self,x):
|
| 543 |
-
|
| 544 |
-
hx = x
|
| 545 |
-
|
| 546 |
-
hxin = self.conv_in(hx)
|
| 547 |
-
#hx = self.pool_in(hxin)
|
| 548 |
-
|
| 549 |
-
#stage 1
|
| 550 |
-
hx1 = self.stage1(hxin)
|
| 551 |
-
hx = self.pool12(hx1)
|
| 552 |
-
|
| 553 |
-
#stage 2
|
| 554 |
-
hx2 = self.stage2(hx)
|
| 555 |
-
hx = self.pool23(hx2)
|
| 556 |
-
|
| 557 |
-
#stage 3
|
| 558 |
-
hx3 = self.stage3(hx)
|
| 559 |
-
hx = self.pool34(hx3)
|
| 560 |
-
|
| 561 |
-
#stage 4
|
| 562 |
-
hx4 = self.stage4(hx)
|
| 563 |
-
hx = self.pool45(hx4)
|
| 564 |
-
|
| 565 |
-
#stage 5
|
| 566 |
-
hx5 = self.stage5(hx)
|
| 567 |
-
hx = self.pool56(hx5)
|
| 568 |
-
|
| 569 |
-
#stage 6
|
| 570 |
-
hx6 = self.stage6(hx)
|
| 571 |
-
hx6up = _upsample_like(hx6,hx5)
|
| 572 |
-
|
| 573 |
-
#-------------------- decoder --------------------
|
| 574 |
-
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
| 575 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
| 576 |
-
|
| 577 |
-
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
| 578 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
| 579 |
-
|
| 580 |
-
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
| 581 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
| 582 |
-
|
| 583 |
-
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
| 584 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
| 585 |
-
|
| 586 |
-
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
#side output
|
| 590 |
-
d1 = self.side1(hx1d)
|
| 591 |
-
d1 = _upsample_like(d1,x)
|
| 592 |
-
|
| 593 |
-
d2 = self.side2(hx2d)
|
| 594 |
-
d2 = _upsample_like(d2,x)
|
| 595 |
-
|
| 596 |
-
d3 = self.side3(hx3d)
|
| 597 |
-
d3 = _upsample_like(d3,x)
|
| 598 |
-
|
| 599 |
-
d4 = self.side4(hx4d)
|
| 600 |
-
d4 = _upsample_like(d4,x)
|
| 601 |
-
|
| 602 |
-
d5 = self.side5(hx5d)
|
| 603 |
-
d5 = _upsample_like(d5,x)
|
| 604 |
-
|
| 605 |
-
d6 = self.side6(hx6)
|
| 606 |
-
d6 = _upsample_like(d6,x)
|
| 607 |
-
|
| 608 |
-
# d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
| 609 |
-
|
| 610 |
-
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
| 611 |
-
# return F.sigmoid(d1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|