Upload 2 files
Browse filesupdate to diffusers 0.31.0
- controlnet.py +18 -17
- pipeline_controlnet_sd_xl.py +276 -140
controlnet.py
CHANGED
|
@@ -19,7 +19,7 @@ from torch import nn
|
|
| 19 |
from torch.nn import functional as F
|
| 20 |
|
| 21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
-
from diffusers.loaders.
|
| 23 |
from diffusers.utils import BaseOutput, logging
|
| 24 |
from diffusers.models.attention_processor import (
|
| 25 |
ADDED_KV_ATTENTION_PROCESSORS,
|
|
@@ -54,7 +54,7 @@ class ControlNetOutput(BaseOutput):
|
|
| 54 |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 55 |
used to condition the original UNet's downsampling activations.
|
| 56 |
mid_down_block_re_sample (`torch.Tensor`):
|
| 57 |
-
The activation of the
|
| 58 |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 59 |
Output can be used to condition the original UNet's middle block activation.
|
| 60 |
"""
|
|
@@ -76,12 +76,12 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
| 76 |
def __init__(
|
| 77 |
self,
|
| 78 |
conditioning_embedding_channels: int,
|
| 79 |
-
conditioning_channels: int = 5, #update to 5
|
| 80 |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 81 |
):
|
| 82 |
super().__init__()
|
| 83 |
|
| 84 |
-
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 85 |
|
| 86 |
self.blocks = nn.ModuleList([])
|
| 87 |
|
|
@@ -89,7 +89,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
| 89 |
channel_in = block_out_channels[i]
|
| 90 |
channel_out = block_out_channels[i + 1]
|
| 91 |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 92 |
-
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1))
|
| 93 |
|
| 94 |
self.conv_out = zero_module(
|
| 95 |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
|
@@ -108,7 +108,7 @@ class ControlNetConditioningEmbedding(nn.Module):
|
|
| 108 |
return embedding
|
| 109 |
|
| 110 |
|
| 111 |
-
class ControlNetModel(ModelMixin, ConfigMixin,
|
| 112 |
"""
|
| 113 |
A ControlNet model.
|
| 114 |
|
|
@@ -530,7 +530,7 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
| 530 |
|
| 531 |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 532 |
if hasattr(module, "get_processor"):
|
| 533 |
-
processors[f"{name}.processor"] = module.get_processor(
|
| 534 |
|
| 535 |
for sub_name, child in module.named_children():
|
| 536 |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
@@ -665,10 +665,10 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
| 665 |
|
| 666 |
def forward(
|
| 667 |
self,
|
| 668 |
-
sample: torch.
|
| 669 |
timestep: Union[torch.Tensor, float, int],
|
| 670 |
encoder_hidden_states: torch.Tensor,
|
| 671 |
-
controlnet_cond: torch.
|
| 672 |
conditioning_scale: float = 1.0,
|
| 673 |
class_labels: Optional[torch.Tensor] = None,
|
| 674 |
timestep_cond: Optional[torch.Tensor] = None,
|
|
@@ -677,18 +677,18 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
| 677 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 678 |
guess_mode: bool = False,
|
| 679 |
return_dict: bool = True,
|
| 680 |
-
) -> Union[ControlNetOutput, Tuple[Tuple[torch.
|
| 681 |
"""
|
| 682 |
The [`ControlNetModel`] forward method.
|
| 683 |
|
| 684 |
Args:
|
| 685 |
-
sample (`torch.
|
| 686 |
The noisy input tensor.
|
| 687 |
timestep (`Union[torch.Tensor, float, int]`):
|
| 688 |
The number of timesteps to denoise an input.
|
| 689 |
encoder_hidden_states (`torch.Tensor`):
|
| 690 |
The encoder hidden states.
|
| 691 |
-
controlnet_cond (`torch.
|
| 692 |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 693 |
conditioning_scale (`float`, defaults to `1.0`):
|
| 694 |
The scale factor for ControlNet outputs.
|
|
@@ -710,12 +710,13 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
| 710 |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 711 |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 712 |
return_dict (`bool`, defaults to `True`):
|
| 713 |
-
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain
|
|
|
|
| 714 |
|
| 715 |
Returns:
|
| 716 |
-
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 717 |
-
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned,
|
| 718 |
-
returned where the first element is the sample tensor.
|
| 719 |
"""
|
| 720 |
# check channel order
|
| 721 |
channel_order = self.config.controlnet_conditioning_channel_order
|
|
@@ -868,4 +869,4 @@ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin):
|
|
| 868 |
def zero_module(module):
|
| 869 |
for p in module.parameters():
|
| 870 |
nn.init.zeros_(p)
|
| 871 |
-
return module
|
|
|
|
| 19 |
from torch.nn import functional as F
|
| 20 |
|
| 21 |
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
| 23 |
from diffusers.utils import BaseOutput, logging
|
| 24 |
from diffusers.models.attention_processor import (
|
| 25 |
ADDED_KV_ATTENTION_PROCESSORS,
|
|
|
|
| 54 |
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 55 |
used to condition the original UNet's downsampling activations.
|
| 56 |
mid_down_block_re_sample (`torch.Tensor`):
|
| 57 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
| 58 |
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 59 |
Output can be used to condition the original UNet's middle block activation.
|
| 60 |
"""
|
|
|
|
| 76 |
def __init__(
|
| 77 |
self,
|
| 78 |
conditioning_embedding_channels: int,
|
| 79 |
+
conditioning_channels: int = 5, # Bria: update to 5
|
| 80 |
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 81 |
):
|
| 82 |
super().__init__()
|
| 83 |
|
| 84 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 85 |
|
| 86 |
self.blocks = nn.ModuleList([])
|
| 87 |
|
|
|
|
| 89 |
channel_in = block_out_channels[i]
|
| 90 |
channel_out = block_out_channels[i + 1]
|
| 91 |
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 92 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) # Bria: update stride to 1
|
| 93 |
|
| 94 |
self.conv_out = zero_module(
|
| 95 |
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
|
|
|
| 108 |
return embedding
|
| 109 |
|
| 110 |
|
| 111 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 112 |
"""
|
| 113 |
A ControlNet model.
|
| 114 |
|
|
|
|
| 530 |
|
| 531 |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 532 |
if hasattr(module, "get_processor"):
|
| 533 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 534 |
|
| 535 |
for sub_name, child in module.named_children():
|
| 536 |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
| 665 |
|
| 666 |
def forward(
|
| 667 |
self,
|
| 668 |
+
sample: torch.Tensor,
|
| 669 |
timestep: Union[torch.Tensor, float, int],
|
| 670 |
encoder_hidden_states: torch.Tensor,
|
| 671 |
+
controlnet_cond: torch.Tensor,
|
| 672 |
conditioning_scale: float = 1.0,
|
| 673 |
class_labels: Optional[torch.Tensor] = None,
|
| 674 |
timestep_cond: Optional[torch.Tensor] = None,
|
|
|
|
| 677 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 678 |
guess_mode: bool = False,
|
| 679 |
return_dict: bool = True,
|
| 680 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
| 681 |
"""
|
| 682 |
The [`ControlNetModel`] forward method.
|
| 683 |
|
| 684 |
Args:
|
| 685 |
+
sample (`torch.Tensor`):
|
| 686 |
The noisy input tensor.
|
| 687 |
timestep (`Union[torch.Tensor, float, int]`):
|
| 688 |
The number of timesteps to denoise an input.
|
| 689 |
encoder_hidden_states (`torch.Tensor`):
|
| 690 |
The encoder hidden states.
|
| 691 |
+
controlnet_cond (`torch.Tensor`):
|
| 692 |
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 693 |
conditioning_scale (`float`, defaults to `1.0`):
|
| 694 |
The scale factor for ControlNet outputs.
|
|
|
|
| 710 |
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 711 |
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 712 |
return_dict (`bool`, defaults to `True`):
|
| 713 |
+
Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
|
| 714 |
+
tuple.
|
| 715 |
|
| 716 |
Returns:
|
| 717 |
+
[`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 718 |
+
If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned,
|
| 719 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
| 720 |
"""
|
| 721 |
# check channel order
|
| 722 |
channel_order = self.config.controlnet_conditioning_channel_order
|
|
|
|
| 869 |
def zero_module(module):
|
| 870 |
for p in module.parameters():
|
| 871 |
nn.init.zeros_(p)
|
| 872 |
+
return module
|
pipeline_controlnet_sd_xl.py
CHANGED
|
@@ -30,14 +30,14 @@ from transformers import (
|
|
| 30 |
|
| 31 |
from diffusers.utils.import_utils import is_invisible_watermark_available
|
| 32 |
|
| 33 |
-
from image_processor import PipelineImageInput, VaeImageProcessor
|
| 34 |
from diffusers.loaders import (
|
| 35 |
FromSingleFileMixin,
|
| 36 |
IPAdapterMixin,
|
| 37 |
StableDiffusionXLLoraLoaderMixin,
|
| 38 |
TextualInversionLoaderMixin,
|
| 39 |
)
|
| 40 |
-
from controlnet import ControlNetModel
|
| 41 |
# from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
| 42 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 43 |
from diffusers.models.attention_processor import (
|
|
@@ -57,9 +57,9 @@ from diffusers.utils import (
|
|
| 57 |
unscale_lora_layers,
|
| 58 |
)
|
| 59 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
| 60 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 61 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 62 |
-
|
| 63 |
|
| 64 |
if is_invisible_watermark_available():
|
| 65 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
|
@@ -116,8 +116,69 @@ EXAMPLE_DOC_STRING = """
|
|
| 116 |
"""
|
| 117 |
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
class StableDiffusionXLControlNetPipeline(
|
| 120 |
DiffusionPipeline,
|
|
|
|
| 121 |
TextualInversionLoaderMixin,
|
| 122 |
StableDiffusionXLLoraLoaderMixin,
|
| 123 |
IPAdapterMixin,
|
|
@@ -176,7 +237,16 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 176 |
"feature_extractor",
|
| 177 |
"image_encoder",
|
| 178 |
]
|
| 179 |
-
_callback_tensor_inputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
def __init__(
|
| 182 |
self,
|
|
@@ -224,39 +294,6 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 224 |
|
| 225 |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
| 226 |
|
| 227 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
| 228 |
-
def enable_vae_slicing(self):
|
| 229 |
-
r"""
|
| 230 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 231 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 232 |
-
"""
|
| 233 |
-
self.vae.enable_slicing()
|
| 234 |
-
|
| 235 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
| 236 |
-
def disable_vae_slicing(self):
|
| 237 |
-
r"""
|
| 238 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
| 239 |
-
computing decoding in one step.
|
| 240 |
-
"""
|
| 241 |
-
self.vae.disable_slicing()
|
| 242 |
-
|
| 243 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
| 244 |
-
def enable_vae_tiling(self):
|
| 245 |
-
r"""
|
| 246 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 247 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 248 |
-
processing larger images.
|
| 249 |
-
"""
|
| 250 |
-
self.vae.enable_tiling()
|
| 251 |
-
|
| 252 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
| 253 |
-
def disable_vae_tiling(self):
|
| 254 |
-
r"""
|
| 255 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
| 256 |
-
computing decoding in one step.
|
| 257 |
-
"""
|
| 258 |
-
self.vae.disable_tiling()
|
| 259 |
-
|
| 260 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
| 261 |
def encode_prompt(
|
| 262 |
self,
|
|
@@ -267,10 +304,10 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 267 |
do_classifier_free_guidance: bool = True,
|
| 268 |
negative_prompt: Optional[str] = None,
|
| 269 |
negative_prompt_2: Optional[str] = None,
|
| 270 |
-
prompt_embeds: Optional[torch.
|
| 271 |
-
negative_prompt_embeds: Optional[torch.
|
| 272 |
-
pooled_prompt_embeds: Optional[torch.
|
| 273 |
-
negative_pooled_prompt_embeds: Optional[torch.
|
| 274 |
lora_scale: Optional[float] = None,
|
| 275 |
clip_skip: Optional[int] = None,
|
| 276 |
):
|
|
@@ -296,17 +333,17 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 296 |
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 297 |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 298 |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 299 |
-
prompt_embeds (`torch.
|
| 300 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 301 |
provided, text embeddings will be generated from `prompt` input argument.
|
| 302 |
-
negative_prompt_embeds (`torch.
|
| 303 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 304 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 305 |
argument.
|
| 306 |
-
pooled_prompt_embeds (`torch.
|
| 307 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 308 |
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 309 |
-
negative_pooled_prompt_embeds (`torch.
|
| 310 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 311 |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 312 |
input argument.
|
|
@@ -353,7 +390,7 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 353 |
prompt_2 = prompt_2 or prompt
|
| 354 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 355 |
|
| 356 |
-
# textual inversion:
|
| 357 |
prompt_embeds_list = []
|
| 358 |
prompts = [prompt, prompt_2]
|
| 359 |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
@@ -518,33 +555,50 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 518 |
return image_embeds, uncond_image_embeds
|
| 519 |
|
| 520 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 521 |
-
def prepare_ip_adapter_image_embeds(
|
| 522 |
-
|
| 523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
)
|
| 538 |
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 539 |
-
single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
| 540 |
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
-
|
|
|
|
| 546 |
|
| 547 |
-
return
|
| 548 |
|
| 549 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 550 |
def prepare_extra_step_kwargs(self, generator, eta):
|
|
@@ -575,6 +629,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 575 |
prompt_embeds=None,
|
| 576 |
negative_prompt_embeds=None,
|
| 577 |
pooled_prompt_embeds=None,
|
|
|
|
|
|
|
| 578 |
negative_pooled_prompt_embeds=None,
|
| 579 |
controlnet_conditioning_scale=1.0,
|
| 580 |
control_guidance_start=0.0,
|
|
@@ -736,6 +792,21 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 736 |
if end > 1.0:
|
| 737 |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
| 738 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 739 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
| 740 |
def check_image(self, image, prompt, prompt_embeds):
|
| 741 |
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
@@ -807,7 +878,12 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 807 |
|
| 808 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 809 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 810 |
-
shape = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 811 |
if isinstance(generator, list) and len(generator) != batch_size:
|
| 812 |
raise ValueError(
|
| 813 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
@@ -851,8 +927,6 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 851 |
(
|
| 852 |
AttnProcessor2_0,
|
| 853 |
XFormersAttnProcessor,
|
| 854 |
-
LoRAXFormersAttnProcessor,
|
| 855 |
-
LoRAAttnProcessor2_0,
|
| 856 |
),
|
| 857 |
)
|
| 858 |
# if xformers or torch_2_0 is used attention block does not need
|
|
@@ -862,49 +936,23 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 862 |
self.vae.decoder.conv_in.to(dtype)
|
| 863 |
self.vae.decoder.mid_block.to(dtype)
|
| 864 |
|
| 865 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
| 866 |
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
| 867 |
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
| 868 |
-
|
| 869 |
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
| 870 |
-
|
| 871 |
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
| 872 |
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 873 |
-
|
| 874 |
-
Args:
|
| 875 |
-
s1 (`float`):
|
| 876 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 877 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
| 878 |
-
s2 (`float`):
|
| 879 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 880 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
| 881 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 882 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 883 |
-
"""
|
| 884 |
-
if not hasattr(self, "unet"):
|
| 885 |
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
| 886 |
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
| 887 |
-
|
| 888 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
| 889 |
-
def disable_freeu(self):
|
| 890 |
-
"""Disables the FreeU mechanism if enabled."""
|
| 891 |
-
self.unet.disable_freeu()
|
| 892 |
-
|
| 893 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 894 |
-
def get_guidance_scale_embedding(
|
|
|
|
|
|
|
| 895 |
"""
|
| 896 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 897 |
|
| 898 |
Args:
|
| 899 |
-
|
| 900 |
-
|
| 901 |
embedding_dim (`int`, *optional*, defaults to 512):
|
| 902 |
-
|
| 903 |
-
dtype:
|
| 904 |
-
|
| 905 |
|
| 906 |
Returns:
|
| 907 |
-
`torch.
|
| 908 |
"""
|
| 909 |
assert len(w.shape) == 1
|
| 910 |
w = w * 1000.0
|
|
@@ -938,10 +986,18 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 938 |
def cross_attention_kwargs(self):
|
| 939 |
return self._cross_attention_kwargs
|
| 940 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 941 |
@property
|
| 942 |
def num_timesteps(self):
|
| 943 |
return self._num_timesteps
|
| 944 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 945 |
@torch.no_grad()
|
| 946 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 947 |
def __call__(
|
|
@@ -952,18 +1008,22 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 952 |
height: Optional[int] = None,
|
| 953 |
width: Optional[int] = None,
|
| 954 |
num_inference_steps: int = 50,
|
|
|
|
|
|
|
|
|
|
| 955 |
guidance_scale: float = 5.0,
|
| 956 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 957 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 958 |
num_images_per_prompt: Optional[int] = 1,
|
| 959 |
eta: float = 0.0,
|
| 960 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 961 |
-
latents: Optional[torch.
|
| 962 |
-
prompt_embeds: Optional[torch.
|
| 963 |
-
negative_prompt_embeds: Optional[torch.
|
| 964 |
-
pooled_prompt_embeds: Optional[torch.
|
| 965 |
-
negative_pooled_prompt_embeds: Optional[torch.
|
| 966 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
|
|
| 967 |
output_type: Optional[str] = "pil",
|
| 968 |
return_dict: bool = True,
|
| 969 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
@@ -978,7 +1038,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 978 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 979 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 980 |
clip_skip: Optional[int] = None,
|
| 981 |
-
callback_on_step_end: Optional[
|
|
|
|
|
|
|
| 982 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 983 |
**kwargs,
|
| 984 |
):
|
|
@@ -991,14 +1053,14 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 991 |
prompt_2 (`str` or `List[str]`, *optional*):
|
| 992 |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 993 |
used in both text-encoders.
|
| 994 |
-
image (`torch.
|
| 995 |
-
`List[List[torch.
|
| 996 |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 997 |
-
specified as `torch.
|
| 998 |
-
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
|
| 1002 |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1003 |
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 1004 |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
@@ -1010,6 +1072,21 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1010 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1011 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1012 |
expense of slower inference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1013 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 1014 |
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 1015 |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
@@ -1027,24 +1104,29 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1027 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1028 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 1029 |
generation deterministic.
|
| 1030 |
-
latents (`torch.
|
| 1031 |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 1032 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1033 |
tensor is generated by sampling using the supplied random `generator`.
|
| 1034 |
-
prompt_embeds (`torch.
|
| 1035 |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 1036 |
provided, text embeddings are generated from the `prompt` input argument.
|
| 1037 |
-
negative_prompt_embeds (`torch.
|
| 1038 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1039 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 1040 |
-
pooled_prompt_embeds (`torch.
|
| 1041 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1042 |
not provided, pooled text embeddings are generated from `prompt` input argument.
|
| 1043 |
-
negative_pooled_prompt_embeds (`torch.
|
| 1044 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
| 1045 |
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
| 1046 |
argument.
|
| 1047 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1048 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1049 |
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 1050 |
return_dict (`bool`, *optional*, defaults to `True`):
|
|
@@ -1096,15 +1178,15 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1096 |
clip_skip (`int`, *optional*):
|
| 1097 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1098 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1099 |
-
callback_on_step_end (`Callable`, *optional*):
|
| 1100 |
-
A function
|
| 1101 |
-
with the following arguments: `callback_on_step_end(self:
|
| 1102 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1103 |
-
`callback_on_step_end_tensor_inputs`.
|
| 1104 |
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1105 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1106 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1107 |
-
`._callback_tensor_inputs` attribute of your
|
| 1108 |
|
| 1109 |
Examples:
|
| 1110 |
|
|
@@ -1130,6 +1212,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1130 |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 1131 |
)
|
| 1132 |
|
|
|
|
|
|
|
|
|
|
| 1133 |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
| 1134 |
|
| 1135 |
# align format for control guidance
|
|
@@ -1155,6 +1240,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1155 |
prompt_embeds,
|
| 1156 |
negative_prompt_embeds,
|
| 1157 |
pooled_prompt_embeds,
|
|
|
|
|
|
|
| 1158 |
negative_pooled_prompt_embeds,
|
| 1159 |
controlnet_conditioning_scale,
|
| 1160 |
control_guidance_start,
|
|
@@ -1165,6 +1252,8 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1165 |
self._guidance_scale = guidance_scale
|
| 1166 |
self._clip_skip = clip_skip
|
| 1167 |
self._cross_attention_kwargs = cross_attention_kwargs
|
|
|
|
|
|
|
| 1168 |
|
| 1169 |
# 2. Define call parameters
|
| 1170 |
if prompt is not None and isinstance(prompt, str):
|
|
@@ -1212,9 +1301,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1212 |
)
|
| 1213 |
|
| 1214 |
# 3.2 Encode ip_adapter_image
|
| 1215 |
-
if ip_adapter_image is not None:
|
| 1216 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1217 |
-
ip_adapter_image,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1218 |
)
|
| 1219 |
|
| 1220 |
# 4. Prepare image
|
|
@@ -1231,7 +1324,7 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1231 |
guess_mode=guess_mode,
|
| 1232 |
)
|
| 1233 |
height, width = image.shape[-2:]
|
| 1234 |
-
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # for vae controlnet
|
| 1235 |
elif isinstance(controlnet, MultiControlNetModel):
|
| 1236 |
images = []
|
| 1237 |
|
|
@@ -1256,8 +1349,9 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1256 |
assert False
|
| 1257 |
|
| 1258 |
# 5. Prepare timesteps
|
| 1259 |
-
|
| 1260 |
-
|
|
|
|
| 1261 |
self._num_timesteps = len(timesteps)
|
| 1262 |
|
| 1263 |
# 6. Prepare latent variables
|
|
@@ -1336,11 +1430,31 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1336 |
|
| 1337 |
# 8. Denoising loop
|
| 1338 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1339 |
is_unet_compiled = is_compiled_module(self.unet)
|
| 1340 |
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
| 1341 |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 1342 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1343 |
for i, t in enumerate(timesteps):
|
|
|
|
|
|
|
|
|
|
| 1344 |
# Relevant thread:
|
| 1345 |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
| 1346 |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
|
@@ -1386,13 +1500,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1386 |
)
|
| 1387 |
|
| 1388 |
if guess_mode and self.do_classifier_free_guidance:
|
| 1389 |
-
#
|
| 1390 |
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
| 1391 |
# add 0 to the unconditional batch to keep it unchanged.
|
| 1392 |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
| 1393 |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
| 1394 |
|
| 1395 |
-
if ip_adapter_image is not None:
|
| 1396 |
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1397 |
|
| 1398 |
# predict the noise residual
|
|
@@ -1425,6 +1539,13 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1425 |
latents = callback_outputs.pop("latents", latents)
|
| 1426 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1427 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1428 |
|
| 1429 |
# call the callback, if provided
|
| 1430 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
@@ -1441,7 +1562,22 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1441 |
self.upcast_vae()
|
| 1442 |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1443 |
|
| 1444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1445 |
|
| 1446 |
# cast back to fp16 if needed
|
| 1447 |
if needs_upcasting:
|
|
@@ -1462,4 +1598,4 @@ class StableDiffusionXLControlNetPipeline(
|
|
| 1462 |
if not return_dict:
|
| 1463 |
return (image,)
|
| 1464 |
|
| 1465 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
| 30 |
|
| 31 |
from diffusers.utils.import_utils import is_invisible_watermark_available
|
| 32 |
|
| 33 |
+
from .image_processor import PipelineImageInput, VaeImageProcessor
|
| 34 |
from diffusers.loaders import (
|
| 35 |
FromSingleFileMixin,
|
| 36 |
IPAdapterMixin,
|
| 37 |
StableDiffusionXLLoraLoaderMixin,
|
| 38 |
TextualInversionLoaderMixin,
|
| 39 |
)
|
| 40 |
+
from .controlnet import ControlNetModel
|
| 41 |
# from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
|
| 42 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
| 43 |
from diffusers.models.attention_processor import (
|
|
|
|
| 57 |
unscale_lora_layers,
|
| 58 |
)
|
| 59 |
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
|
| 60 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
| 61 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
| 62 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 63 |
|
| 64 |
if is_invisible_watermark_available():
|
| 65 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
|
|
|
| 116 |
"""
|
| 117 |
|
| 118 |
|
| 119 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 120 |
+
def retrieve_timesteps(
|
| 121 |
+
scheduler,
|
| 122 |
+
num_inference_steps: Optional[int] = None,
|
| 123 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 124 |
+
timesteps: Optional[List[int]] = None,
|
| 125 |
+
sigmas: Optional[List[float]] = None,
|
| 126 |
+
**kwargs,
|
| 127 |
+
):
|
| 128 |
+
r"""
|
| 129 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 130 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
scheduler (`SchedulerMixin`):
|
| 134 |
+
The scheduler to get timesteps from.
|
| 135 |
+
num_inference_steps (`int`):
|
| 136 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 137 |
+
must be `None`.
|
| 138 |
+
device (`str` or `torch.device`, *optional*):
|
| 139 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 140 |
+
timesteps (`List[int]`, *optional*):
|
| 141 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 142 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 143 |
+
sigmas (`List[float]`, *optional*):
|
| 144 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 145 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 149 |
+
second element is the number of inference steps.
|
| 150 |
+
"""
|
| 151 |
+
if timesteps is not None and sigmas is not None:
|
| 152 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 153 |
+
if timesteps is not None:
|
| 154 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 155 |
+
if not accepts_timesteps:
|
| 156 |
+
raise ValueError(
|
| 157 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 158 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 159 |
+
)
|
| 160 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 161 |
+
timesteps = scheduler.timesteps
|
| 162 |
+
num_inference_steps = len(timesteps)
|
| 163 |
+
elif sigmas is not None:
|
| 164 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 165 |
+
if not accept_sigmas:
|
| 166 |
+
raise ValueError(
|
| 167 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 168 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 169 |
+
)
|
| 170 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 171 |
+
timesteps = scheduler.timesteps
|
| 172 |
+
num_inference_steps = len(timesteps)
|
| 173 |
+
else:
|
| 174 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 175 |
+
timesteps = scheduler.timesteps
|
| 176 |
+
return timesteps, num_inference_steps
|
| 177 |
+
|
| 178 |
+
|
| 179 |
class StableDiffusionXLControlNetPipeline(
|
| 180 |
DiffusionPipeline,
|
| 181 |
+
StableDiffusionMixin,
|
| 182 |
TextualInversionLoaderMixin,
|
| 183 |
StableDiffusionXLLoraLoaderMixin,
|
| 184 |
IPAdapterMixin,
|
|
|
|
| 237 |
"feature_extractor",
|
| 238 |
"image_encoder",
|
| 239 |
]
|
| 240 |
+
_callback_tensor_inputs = [
|
| 241 |
+
"latents",
|
| 242 |
+
"prompt_embeds",
|
| 243 |
+
"negative_prompt_embeds",
|
| 244 |
+
"add_text_embeds",
|
| 245 |
+
"add_time_ids",
|
| 246 |
+
"negative_pooled_prompt_embeds",
|
| 247 |
+
"negative_add_time_ids",
|
| 248 |
+
"image",
|
| 249 |
+
]
|
| 250 |
|
| 251 |
def __init__(
|
| 252 |
self,
|
|
|
|
| 294 |
|
| 295 |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
| 298 |
def encode_prompt(
|
| 299 |
self,
|
|
|
|
| 304 |
do_classifier_free_guidance: bool = True,
|
| 305 |
negative_prompt: Optional[str] = None,
|
| 306 |
negative_prompt_2: Optional[str] = None,
|
| 307 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 308 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 309 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 310 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 311 |
lora_scale: Optional[float] = None,
|
| 312 |
clip_skip: Optional[int] = None,
|
| 313 |
):
|
|
|
|
| 333 |
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 334 |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 335 |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
| 336 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 337 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 338 |
provided, text embeddings will be generated from `prompt` input argument.
|
| 339 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 340 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 341 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 342 |
argument.
|
| 343 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 344 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 345 |
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 346 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 347 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 348 |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 349 |
input argument.
|
|
|
|
| 390 |
prompt_2 = prompt_2 or prompt
|
| 391 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 392 |
|
| 393 |
+
# textual inversion: process multi-vector tokens if necessary
|
| 394 |
prompt_embeds_list = []
|
| 395 |
prompts = [prompt, prompt_2]
|
| 396 |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
|
|
| 555 |
return image_embeds, uncond_image_embeds
|
| 556 |
|
| 557 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
| 558 |
+
def prepare_ip_adapter_image_embeds(
|
| 559 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
| 560 |
+
):
|
| 561 |
+
image_embeds = []
|
| 562 |
+
if do_classifier_free_guidance:
|
| 563 |
+
negative_image_embeds = []
|
| 564 |
+
if ip_adapter_image_embeds is None:
|
| 565 |
+
if not isinstance(ip_adapter_image, list):
|
| 566 |
+
ip_adapter_image = [ip_adapter_image]
|
| 567 |
|
| 568 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
| 569 |
+
raise ValueError(
|
| 570 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
| 571 |
+
)
|
| 572 |
|
| 573 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
| 574 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
| 575 |
+
):
|
| 576 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
| 577 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
| 578 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
| 579 |
+
)
|
|
|
|
|
|
|
|
|
|
| 580 |
|
| 581 |
+
image_embeds.append(single_image_embeds[None, :])
|
| 582 |
+
if do_classifier_free_guidance:
|
| 583 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
| 584 |
+
else:
|
| 585 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
| 586 |
+
if do_classifier_free_guidance:
|
| 587 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
| 588 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
| 589 |
+
image_embeds.append(single_image_embeds)
|
| 590 |
+
|
| 591 |
+
ip_adapter_image_embeds = []
|
| 592 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
| 593 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
| 594 |
+
if do_classifier_free_guidance:
|
| 595 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
| 596 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
| 597 |
|
| 598 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
| 599 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
| 600 |
|
| 601 |
+
return ip_adapter_image_embeds
|
| 602 |
|
| 603 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 604 |
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
| 629 |
prompt_embeds=None,
|
| 630 |
negative_prompt_embeds=None,
|
| 631 |
pooled_prompt_embeds=None,
|
| 632 |
+
ip_adapter_image=None,
|
| 633 |
+
ip_adapter_image_embeds=None,
|
| 634 |
negative_pooled_prompt_embeds=None,
|
| 635 |
controlnet_conditioning_scale=1.0,
|
| 636 |
control_guidance_start=0.0,
|
|
|
|
| 792 |
if end > 1.0:
|
| 793 |
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
| 794 |
|
| 795 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
| 796 |
+
raise ValueError(
|
| 797 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
if ip_adapter_image_embeds is not None:
|
| 801 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
| 802 |
+
raise ValueError(
|
| 803 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
| 804 |
+
)
|
| 805 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
| 806 |
+
raise ValueError(
|
| 807 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
| 811 |
def check_image(self, image, prompt, prompt_embeds):
|
| 812 |
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
|
|
| 878 |
|
| 879 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 880 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 881 |
+
shape = (
|
| 882 |
+
batch_size,
|
| 883 |
+
num_channels_latents,
|
| 884 |
+
int(height) // self.vae_scale_factor,
|
| 885 |
+
int(width) // self.vae_scale_factor,
|
| 886 |
+
)
|
| 887 |
if isinstance(generator, list) and len(generator) != batch_size:
|
| 888 |
raise ValueError(
|
| 889 |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
|
|
| 927 |
(
|
| 928 |
AttnProcessor2_0,
|
| 929 |
XFormersAttnProcessor,
|
|
|
|
|
|
|
| 930 |
),
|
| 931 |
)
|
| 932 |
# if xformers or torch_2_0 is used attention block does not need
|
|
|
|
| 936 |
self.vae.decoder.conv_in.to(dtype)
|
| 937 |
self.vae.decoder.mid_block.to(dtype)
|
| 938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 939 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
| 940 |
+
def get_guidance_scale_embedding(
|
| 941 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
| 942 |
+
) -> torch.Tensor:
|
| 943 |
"""
|
| 944 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
| 945 |
|
| 946 |
Args:
|
| 947 |
+
w (`torch.Tensor`):
|
| 948 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
| 949 |
embedding_dim (`int`, *optional*, defaults to 512):
|
| 950 |
+
Dimension of the embeddings to generate.
|
| 951 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
| 952 |
+
Data type of the generated embeddings.
|
| 953 |
|
| 954 |
Returns:
|
| 955 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
| 956 |
"""
|
| 957 |
assert len(w.shape) == 1
|
| 958 |
w = w * 1000.0
|
|
|
|
| 986 |
def cross_attention_kwargs(self):
|
| 987 |
return self._cross_attention_kwargs
|
| 988 |
|
| 989 |
+
@property
|
| 990 |
+
def denoising_end(self):
|
| 991 |
+
return self._denoising_end
|
| 992 |
+
|
| 993 |
@property
|
| 994 |
def num_timesteps(self):
|
| 995 |
return self._num_timesteps
|
| 996 |
|
| 997 |
+
@property
|
| 998 |
+
def interrupt(self):
|
| 999 |
+
return self._interrupt
|
| 1000 |
+
|
| 1001 |
@torch.no_grad()
|
| 1002 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 1003 |
def __call__(
|
|
|
|
| 1008 |
height: Optional[int] = None,
|
| 1009 |
width: Optional[int] = None,
|
| 1010 |
num_inference_steps: int = 50,
|
| 1011 |
+
timesteps: List[int] = None,
|
| 1012 |
+
sigmas: List[float] = None,
|
| 1013 |
+
denoising_end: Optional[float] = None,
|
| 1014 |
guidance_scale: float = 5.0,
|
| 1015 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1016 |
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 1017 |
num_images_per_prompt: Optional[int] = 1,
|
| 1018 |
eta: float = 0.0,
|
| 1019 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1020 |
+
latents: Optional[torch.Tensor] = None,
|
| 1021 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 1022 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1023 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1024 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
| 1025 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
| 1026 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
| 1027 |
output_type: Optional[str] = "pil",
|
| 1028 |
return_dict: bool = True,
|
| 1029 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
| 1038 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
| 1039 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
| 1040 |
clip_skip: Optional[int] = None,
|
| 1041 |
+
callback_on_step_end: Optional[
|
| 1042 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 1043 |
+
] = None,
|
| 1044 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 1045 |
**kwargs,
|
| 1046 |
):
|
|
|
|
| 1053 |
prompt_2 (`str` or `List[str]`, *optional*):
|
| 1054 |
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 1055 |
used in both text-encoders.
|
| 1056 |
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 1057 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 1058 |
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 1059 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
| 1060 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
| 1061 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
| 1062 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
| 1063 |
+
to a single ControlNet.
|
| 1064 |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 1065 |
The height in pixels of the generated image. Anything below 512 pixels won't work well for
|
| 1066 |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
|
|
|
| 1072 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 1073 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 1074 |
expense of slower inference.
|
| 1075 |
+
timesteps (`List[int]`, *optional*):
|
| 1076 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 1077 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 1078 |
+
passed will be used. Must be in descending order.
|
| 1079 |
+
sigmas (`List[float]`, *optional*):
|
| 1080 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 1081 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 1082 |
+
will be used.
|
| 1083 |
+
denoising_end (`float`, *optional*):
|
| 1084 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
| 1085 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
| 1086 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
| 1087 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
| 1088 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
| 1089 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
| 1090 |
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 1091 |
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 1092 |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
|
|
| 1104 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1105 |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 1106 |
generation deterministic.
|
| 1107 |
+
latents (`torch.Tensor`, *optional*):
|
| 1108 |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 1109 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1110 |
tensor is generated by sampling using the supplied random `generator`.
|
| 1111 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 1112 |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 1113 |
provided, text embeddings are generated from the `prompt` input argument.
|
| 1114 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1115 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1116 |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
| 1117 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1118 |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
| 1119 |
not provided, pooled text embeddings are generated from `prompt` input argument.
|
| 1120 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
| 1121 |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
| 1122 |
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
| 1123 |
argument.
|
| 1124 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
| 1125 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
| 1126 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
| 1127 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
| 1128 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
| 1129 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
| 1130 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1131 |
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 1132 |
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
| 1178 |
clip_skip (`int`, *optional*):
|
| 1179 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 1180 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 1181 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 1182 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 1183 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 1184 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 1185 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 1186 |
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1187 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1188 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1189 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1190 |
|
| 1191 |
Examples:
|
| 1192 |
|
|
|
|
| 1212 |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
| 1213 |
)
|
| 1214 |
|
| 1215 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 1216 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 1217 |
+
|
| 1218 |
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
| 1219 |
|
| 1220 |
# align format for control guidance
|
|
|
|
| 1240 |
prompt_embeds,
|
| 1241 |
negative_prompt_embeds,
|
| 1242 |
pooled_prompt_embeds,
|
| 1243 |
+
ip_adapter_image,
|
| 1244 |
+
ip_adapter_image_embeds,
|
| 1245 |
negative_pooled_prompt_embeds,
|
| 1246 |
controlnet_conditioning_scale,
|
| 1247 |
control_guidance_start,
|
|
|
|
| 1252 |
self._guidance_scale = guidance_scale
|
| 1253 |
self._clip_skip = clip_skip
|
| 1254 |
self._cross_attention_kwargs = cross_attention_kwargs
|
| 1255 |
+
self._denoising_end = denoising_end
|
| 1256 |
+
self._interrupt = False
|
| 1257 |
|
| 1258 |
# 2. Define call parameters
|
| 1259 |
if prompt is not None and isinstance(prompt, str):
|
|
|
|
| 1301 |
)
|
| 1302 |
|
| 1303 |
# 3.2 Encode ip_adapter_image
|
| 1304 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1305 |
image_embeds = self.prepare_ip_adapter_image_embeds(
|
| 1306 |
+
ip_adapter_image,
|
| 1307 |
+
ip_adapter_image_embeds,
|
| 1308 |
+
device,
|
| 1309 |
+
batch_size * num_images_per_prompt,
|
| 1310 |
+
self.do_classifier_free_guidance,
|
| 1311 |
)
|
| 1312 |
|
| 1313 |
# 4. Prepare image
|
|
|
|
| 1324 |
guess_mode=guess_mode,
|
| 1325 |
)
|
| 1326 |
height, width = image.shape[-2:]
|
| 1327 |
+
height, width = height*self.vae_scale_factor, width*self.vae_scale_factor # Bria: update for vae controlnet
|
| 1328 |
elif isinstance(controlnet, MultiControlNetModel):
|
| 1329 |
images = []
|
| 1330 |
|
|
|
|
| 1349 |
assert False
|
| 1350 |
|
| 1351 |
# 5. Prepare timesteps
|
| 1352 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1353 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
| 1354 |
+
)
|
| 1355 |
self._num_timesteps = len(timesteps)
|
| 1356 |
|
| 1357 |
# 6. Prepare latent variables
|
|
|
|
| 1430 |
|
| 1431 |
# 8. Denoising loop
|
| 1432 |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 1433 |
+
|
| 1434 |
+
# 8.1 Apply denoising_end
|
| 1435 |
+
if (
|
| 1436 |
+
self.denoising_end is not None
|
| 1437 |
+
and isinstance(self.denoising_end, float)
|
| 1438 |
+
and self.denoising_end > 0
|
| 1439 |
+
and self.denoising_end < 1
|
| 1440 |
+
):
|
| 1441 |
+
discrete_timestep_cutoff = int(
|
| 1442 |
+
round(
|
| 1443 |
+
self.scheduler.config.num_train_timesteps
|
| 1444 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
| 1445 |
+
)
|
| 1446 |
+
)
|
| 1447 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
| 1448 |
+
timesteps = timesteps[:num_inference_steps]
|
| 1449 |
+
|
| 1450 |
is_unet_compiled = is_compiled_module(self.unet)
|
| 1451 |
is_controlnet_compiled = is_compiled_module(self.controlnet)
|
| 1452 |
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
| 1453 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1454 |
for i, t in enumerate(timesteps):
|
| 1455 |
+
if self.interrupt:
|
| 1456 |
+
continue
|
| 1457 |
+
|
| 1458 |
# Relevant thread:
|
| 1459 |
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
| 1460 |
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
|
|
|
| 1500 |
)
|
| 1501 |
|
| 1502 |
if guess_mode and self.do_classifier_free_guidance:
|
| 1503 |
+
# Inferred ControlNet only for the conditional batch.
|
| 1504 |
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
| 1505 |
# add 0 to the unconditional batch to keep it unchanged.
|
| 1506 |
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
| 1507 |
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
| 1508 |
|
| 1509 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
| 1510 |
added_cond_kwargs["image_embeds"] = image_embeds
|
| 1511 |
|
| 1512 |
# predict the noise residual
|
|
|
|
| 1539 |
latents = callback_outputs.pop("latents", latents)
|
| 1540 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1541 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 1542 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
| 1543 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1544 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1545 |
+
)
|
| 1546 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
| 1547 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
| 1548 |
+
image = callback_outputs.pop("image", image)
|
| 1549 |
|
| 1550 |
# call the callback, if provided
|
| 1551 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
| 1562 |
self.upcast_vae()
|
| 1563 |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
| 1564 |
|
| 1565 |
+
# unscale/denormalize the latents
|
| 1566 |
+
# denormalize with the mean and std if available and not None
|
| 1567 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
| 1568 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
| 1569 |
+
if has_latents_mean and has_latents_std:
|
| 1570 |
+
latents_mean = (
|
| 1571 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1572 |
+
)
|
| 1573 |
+
latents_std = (
|
| 1574 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
| 1575 |
+
)
|
| 1576 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
| 1577 |
+
else:
|
| 1578 |
+
latents = latents / self.vae.config.scaling_factor
|
| 1579 |
+
|
| 1580 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1581 |
|
| 1582 |
# cast back to fp16 if needed
|
| 1583 |
if needs_upcasting:
|
|
|
|
| 1598 |
if not return_dict:
|
| 1599 |
return (image,)
|
| 1600 |
|
| 1601 |
+
return StableDiffusionXLPipelineOutput(images=image)
|