boltuix commited on
Commit
f8f1f2f
·
verified ·
1 Parent(s): 815e41e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -4
README.md CHANGED
@@ -40,8 +40,8 @@ tags:
40
  - smart-replies
41
  - tone-analysis
42
  base_model:
43
- - boltuix/bert-lite
44
  - boltuix/bitBERT
 
45
  ---
46
 
47
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhgHs4EXWBZuQWWC-bfliV2jHZN7wsgn810HEf42UuUbdPgV9aLVIq7Hiv7sWr0aqsB5aTkiylPkytpOpimhp8Atuo3Q_kO5C6uZTuQf4YEWklXqE7jQiUfZlENL5AjNgvnpLxuBg628ztR4w276TEv8Vr9u7ER7wr6i6A8W14UQ8diNBrsS0zVMVYZVYk/s4000/bert-emotions.jpg)
@@ -76,7 +76,7 @@ base_model:
76
 
77
  ## Overview
78
 
79
- `BERT-Emotion` is a **lightweight** NLP model derived from **bert-lite** and **NeuroBERT-Mini**, fine-tuned for **short-text emotion detection** on **edge and IoT devices**. With a quantized size of **~20MB** and **~6M parameters**, it classifies text into **13 rich emotional categories** (e.g., Happiness, Sadness, Anger, Love) with high accuracy. Optimized for **low-latency** and **offline operation**, BERT-Emotion is ideal for privacy-first applications like chatbots, social media sentiment analysis, and mental health monitoring in resource-constrained environments such as mobile apps, wearables, and smart home devices.
80
 
81
  - **Model Name**: BERT-Emotion
82
  - **Size**: ~20MB (quantized)
@@ -534,7 +534,7 @@ For more details on each variant, visit the [BoltUIX Model Hub](https://huggingf
534
 
535
  ## Credits
536
 
537
- - **Base Models**: [boltuix/bert-lite](https://huggingface.co/boltuix/bert-lite), [boltuix/bitBERT]
538
  - **Optimized By**: Boltuix, fine-tuned and quantized for edge AI applications
539
  - **Library**: Hugging Face `transformers` team for model hosting and tools
540
 
@@ -546,8 +546,14 @@ For issues, questions, or contributions:
546
  - Join discussions on Hugging Face or contribute via pull requests
547
  - Check the [Transformers documentation](https://huggingface.co/docs/transformers) for guidance
548
 
 
 
 
 
 
 
549
  We welcome community feedback to enhance BERT-Emotion for IoT and edge applications!
550
 
551
  ## Contact
552
 
553
- - 📬 Email: [[email protected]](mailto:[email protected])
 
40
  - smart-replies
41
  - tone-analysis
42
  base_model:
 
43
  - boltuix/bitBERT
44
+ - boltuix/bert-mini
45
  ---
46
 
47
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhgHs4EXWBZuQWWC-bfliV2jHZN7wsgn810HEf42UuUbdPgV9aLVIq7Hiv7sWr0aqsB5aTkiylPkytpOpimhp8Atuo3Q_kO5C6uZTuQf4YEWklXqE7jQiUfZlENL5AjNgvnpLxuBg628ztR4w276TEv8Vr9u7ER7wr6i6A8W14UQ8diNBrsS0zVMVYZVYk/s4000/bert-emotions.jpg)
 
76
 
77
  ## Overview
78
 
79
+ `BERT-Emotion` is a **lightweight** NLP model derived from **bert-mini** and **bert-micro**, fine-tuned for **short-text emotion detection** on **edge and IoT devices**. With a quantized size of **~20MB** and **~6M parameters**, it classifies text into **13 rich emotional categories** (e.g., Happiness, Sadness, Anger, Love) with high accuracy. Optimized for **low-latency** and **offline operation**, BERT-Emotion is ideal for privacy-first applications like chatbots, social media sentiment analysis, and mental health monitoring in resource-constrained environments such as mobile apps, wearables, and smart home devices.
80
 
81
  - **Model Name**: BERT-Emotion
82
  - **Size**: ~20MB (quantized)
 
534
 
535
  ## Credits
536
 
537
+ - **Base Models**: [boltuix/bert-mini](https://huggingface.co/boltuix/bert-mini), [boltuix/bert-mini]
538
  - **Optimized By**: Boltuix, fine-tuned and quantized for edge AI applications
539
  - **Library**: Hugging Face `transformers` team for model hosting and tools
540
 
 
546
  - Join discussions on Hugging Face or contribute via pull requests
547
  - Check the [Transformers documentation](https://huggingface.co/docs/transformers) for guidance
548
 
549
+
550
+ Train Your Own Emotion Detection AI in Minutes! | NeuroFeel + NeuroBERT | Hugging Face Tutorial
551
+ - Check this : [Video documentation](https://youtu.be/FccGKE1kV4Q) [to train own model](https://www.boltuix.com/2021/03/revolutionizing-nlp-deep-dive-into-bert.html)
552
+
553
+
554
+
555
  We welcome community feedback to enhance BERT-Emotion for IoT and edge applications!
556
 
557
  ## Contact
558
 
559
+ - 📬 Email: [[email protected]](mailto:[email protected])