Update README.md
Browse files
README.md
CHANGED
@@ -40,8 +40,8 @@ tags:
|
|
40 |
- smart-replies
|
41 |
- tone-analysis
|
42 |
base_model:
|
43 |
-
- boltuix/bert-lite
|
44 |
- boltuix/bitBERT
|
|
|
45 |
---
|
46 |
|
47 |

|
@@ -76,7 +76,7 @@ base_model:
|
|
76 |
|
77 |
## Overview
|
78 |
|
79 |
-
`BERT-Emotion` is a **lightweight** NLP model derived from **bert-
|
80 |
|
81 |
- **Model Name**: BERT-Emotion
|
82 |
- **Size**: ~20MB (quantized)
|
@@ -534,7 +534,7 @@ For more details on each variant, visit the [BoltUIX Model Hub](https://huggingf
|
|
534 |
|
535 |
## Credits
|
536 |
|
537 |
-
- **Base Models**: [boltuix/bert-
|
538 |
- **Optimized By**: Boltuix, fine-tuned and quantized for edge AI applications
|
539 |
- **Library**: Hugging Face `transformers` team for model hosting and tools
|
540 |
|
@@ -546,8 +546,14 @@ For issues, questions, or contributions:
|
|
546 |
- Join discussions on Hugging Face or contribute via pull requests
|
547 |
- Check the [Transformers documentation](https://huggingface.co/docs/transformers) for guidance
|
548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
We welcome community feedback to enhance BERT-Emotion for IoT and edge applications!
|
550 |
|
551 |
## Contact
|
552 |
|
553 |
-
- 📬 Email: [[email protected]](mailto:[email protected])
|
|
|
40 |
- smart-replies
|
41 |
- tone-analysis
|
42 |
base_model:
|
|
|
43 |
- boltuix/bitBERT
|
44 |
+
- boltuix/bert-mini
|
45 |
---
|
46 |
|
47 |

|
|
|
76 |
|
77 |
## Overview
|
78 |
|
79 |
+
`BERT-Emotion` is a **lightweight** NLP model derived from **bert-mini** and **bert-micro**, fine-tuned for **short-text emotion detection** on **edge and IoT devices**. With a quantized size of **~20MB** and **~6M parameters**, it classifies text into **13 rich emotional categories** (e.g., Happiness, Sadness, Anger, Love) with high accuracy. Optimized for **low-latency** and **offline operation**, BERT-Emotion is ideal for privacy-first applications like chatbots, social media sentiment analysis, and mental health monitoring in resource-constrained environments such as mobile apps, wearables, and smart home devices.
|
80 |
|
81 |
- **Model Name**: BERT-Emotion
|
82 |
- **Size**: ~20MB (quantized)
|
|
|
534 |
|
535 |
## Credits
|
536 |
|
537 |
+
- **Base Models**: [boltuix/bert-mini](https://huggingface.co/boltuix/bert-mini), [boltuix/bert-mini]
|
538 |
- **Optimized By**: Boltuix, fine-tuned and quantized for edge AI applications
|
539 |
- **Library**: Hugging Face `transformers` team for model hosting and tools
|
540 |
|
|
|
546 |
- Join discussions on Hugging Face or contribute via pull requests
|
547 |
- Check the [Transformers documentation](https://huggingface.co/docs/transformers) for guidance
|
548 |
|
549 |
+
|
550 |
+
Train Your Own Emotion Detection AI in Minutes! | NeuroFeel + NeuroBERT | Hugging Face Tutorial
|
551 |
+
- Check this : [Video documentation](https://youtu.be/FccGKE1kV4Q) [to train own model](https://www.boltuix.com/2021/03/revolutionizing-nlp-deep-dive-into-bert.html)
|
552 |
+
|
553 |
+
|
554 |
+
|
555 |
We welcome community feedback to enhance BERT-Emotion for IoT and edge applications!
|
556 |
|
557 |
## Contact
|
558 |
|
559 |
+
- 📬 Email: [[email protected]](mailto:[email protected])
|