biswanath2.roul
Initial commit
e4d5155
raw
history blame
11.4 kB
"""
Semantic chunking for intelligent context segmentation.
"""
import logging
import uuid
from typing import List, Dict, Any, Optional, Tuple
from efficient_context.chunking.base import BaseChunker, Chunk
from efficient_context.utils.text import split_into_sentences, calculate_text_overlap
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SemanticChunker(BaseChunker):
"""
Chunker that creates chunks based on semantic boundaries.
This chunker aims to keep semantically related content together, unlike
simple token-based chunking that might split content mid-thought.
"""
def __init__(
self,
chunk_size: int = 512,
chunk_overlap: int = 50,
respect_paragraphs: bool = True,
min_chunk_size: int = 100,
max_chunk_size: int = 1024
):
"""
Initialize the SemanticChunker.
Args:
chunk_size: Target size for chunks in tokens (words)
chunk_overlap: Number of tokens to overlap between chunks
respect_paragraphs: Whether to avoid breaking paragraphs across chunks
min_chunk_size: Minimum chunk size in tokens
max_chunk_size: Maximum chunk size in tokens
"""
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.respect_paragraphs = respect_paragraphs
self.min_chunk_size = min_chunk_size
self.max_chunk_size = max_chunk_size
logger.info(
"SemanticChunker initialized with target size: %d tokens, overlap: %d tokens",
chunk_size, chunk_overlap
)
def _estimate_tokens(self, text: str) -> int:
"""
Estimate the number of tokens in text.
Args:
text: Text to estimate tokens for
Returns:
token_count: Estimated number of tokens
"""
# Simple whitespace-based token estimation
# This is much faster than using a tokenizer and good enough for chunking
return len(text.split())
def _identify_paragraphs(self, content: str) -> List[str]:
"""
Split content into paragraphs.
Args:
content: Content to split
Returns:
paragraphs: List of paragraphs
"""
# Split on empty lines (common paragraph separator)
paragraphs = [p.strip() for p in content.split("\n\n")]
# Handle other kinds of paragraph breaks and clean up
result = []
current = ""
for p in paragraphs:
# Skip empty paragraphs
if not p:
continue
# Handle single newlines that might indicate paragraphs
lines = p.split("\n")
for line in lines:
if not line.strip():
if current:
result.append(current)
current = ""
else:
if current:
current += " " + line.strip()
else:
current = line.strip()
if current:
result.append(current)
current = ""
# Add any remaining content
if current:
result.append(current)
return result if result else [content]
def _create_semantic_chunks(
self,
paragraphs: List[str],
document_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None
) -> List[Chunk]:
"""
Create chunks from paragraphs respecting semantic boundaries.
Args:
paragraphs: List of paragraphs to chunk
document_id: Optional ID of the source document
metadata: Optional metadata for the chunks
Returns:
chunks: List of Chunk objects
"""
chunks = []
current_chunk_text = ""
current_token_count = 0
for paragraph in paragraphs:
paragraph_tokens = self._estimate_tokens(paragraph)
# Check if adding this paragraph would exceed the max chunk size
if (current_token_count + paragraph_tokens > self.max_chunk_size and
current_token_count >= self.min_chunk_size):
# Create a new chunk with the current content
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=current_chunk_text.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
# Start a new chunk with overlap
if self.chunk_overlap > 0 and current_chunk_text:
# Get the last N tokens for overlap
words = current_chunk_text.split()
overlap_text = " ".join(words[-min(self.chunk_overlap, len(words)):])
current_chunk_text = overlap_text + " " + paragraph
current_token_count = self._estimate_tokens(current_chunk_text)
else:
# No overlap
current_chunk_text = paragraph
current_token_count = paragraph_tokens
# Handle very large paragraphs that exceed max_chunk_size on their own
elif paragraph_tokens > self.max_chunk_size:
# If we have existing content, create a chunk first
if current_chunk_text:
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=current_chunk_text.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
current_chunk_text = ""
current_token_count = 0
# Split the large paragraph into sentences
sentences = split_into_sentences(paragraph)
sentence_chunk = ""
sentence_token_count = 0
for sentence in sentences:
sentence_tokens = self._estimate_tokens(sentence)
# Check if adding this sentence would exceed the max chunk size
if (sentence_token_count + sentence_tokens > self.max_chunk_size and
sentence_token_count >= self.min_chunk_size):
# Create a new chunk with the current sentences
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=sentence_chunk.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
# Start a new chunk with overlap
if self.chunk_overlap > 0 and sentence_chunk:
words = sentence_chunk.split()
overlap_text = " ".join(words[-min(self.chunk_overlap, len(words)):])
sentence_chunk = overlap_text + " " + sentence
sentence_token_count = self._estimate_tokens(sentence_chunk)
else:
sentence_chunk = sentence
sentence_token_count = sentence_tokens
else:
# Add the sentence to the current chunk
if sentence_chunk:
sentence_chunk += " " + sentence
else:
sentence_chunk = sentence
sentence_token_count += sentence_tokens
# Add any remaining sentence content as a chunk
if sentence_chunk:
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=sentence_chunk.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
else:
# Add the paragraph to the current chunk
if current_chunk_text:
current_chunk_text += " " + paragraph
else:
current_chunk_text = paragraph
current_token_count += paragraph_tokens
# Check if we've reached the target chunk size
if current_token_count >= self.chunk_size:
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=current_chunk_text.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
# Start a new chunk with overlap
if self.chunk_overlap > 0:
words = current_chunk_text.split()
current_chunk_text = " ".join(words[-min(self.chunk_overlap, len(words)):])
current_token_count = self._estimate_tokens(current_chunk_text)
else:
current_chunk_text = ""
current_token_count = 0
# Add any remaining content as a final chunk
if current_chunk_text and current_token_count >= self.min_chunk_size:
chunk_id = str(uuid.uuid4())
chunk = Chunk(
content=current_chunk_text.strip(),
chunk_id=chunk_id,
document_id=document_id,
metadata=metadata
)
chunks.append(chunk)
return chunks
def chunk(
self,
content: str,
metadata: Optional[Dict[str, Any]] = None,
document_id: Optional[str] = None
) -> List[Chunk]:
"""
Split content into semantic chunks.
Args:
content: Content to be chunked
metadata: Optional metadata to associate with chunks
document_id: Optional document ID to associate with chunks
Returns:
chunks: List of Chunk objects
"""
if not content.strip():
return []
# Identify paragraphs
if self.respect_paragraphs:
paragraphs = self._identify_paragraphs(content)
else:
# Treat the whole content as one paragraph
paragraphs = [content]
# Create chunks from paragraphs
chunks = self._create_semantic_chunks(paragraphs, document_id, metadata)
logger.info("Created %d chunks from content", len(chunks))
return chunks