Commit
·
00b95dc
1
Parent(s):
7cc5660
Update README.md (#1)
Browse files- Update README.md (d8040f895b7124bcfb7862ed5a7d19412960def7)
README.md
CHANGED
|
@@ -69,7 +69,7 @@ language:
|
|
| 69 |
- my
|
| 70 |
- ne
|
| 71 |
- nl
|
| 72 |
-
- no
|
| 73 |
- ny
|
| 74 |
- pa
|
| 75 |
- pl
|
|
@@ -105,24 +105,35 @@ language:
|
|
| 105 |
- yo
|
| 106 |
- zh
|
| 107 |
- zu
|
| 108 |
-
pipeline_tag:
|
| 109 |
widget:
|
| 110 |
-
- text:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
example_title:
|
| 114 |
-
- text:
|
| 115 |
-
example_title:
|
| 116 |
-
- text:
|
| 117 |
-
example_title:
|
| 118 |
-
- text:
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
example_title:
|
| 122 |
-
- text:
|
| 123 |
-
example_title:
|
| 124 |
-
- text:
|
| 125 |
-
example_title:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
model-index:
|
| 127 |
- name: mt0-base
|
| 128 |
results:
|
|
@@ -246,7 +257,7 @@ model-index:
|
|
| 246 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 247 |
metrics:
|
| 248 |
- type: Accuracy
|
| 249 |
-
value: 50
|
| 250 |
- task:
|
| 251 |
type: Natural language inference
|
| 252 |
dataset:
|
|
@@ -428,7 +439,7 @@ model-index:
|
|
| 428 |
dataset:
|
| 429 |
type: story_cloze
|
| 430 |
name: StoryCloze (2016)
|
| 431 |
-
config:
|
| 432 |
split: validation
|
| 433 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
| 434 |
metrics:
|
|
@@ -444,7 +455,7 @@ model-index:
|
|
| 444 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 445 |
metrics:
|
| 446 |
- type: Accuracy
|
| 447 |
-
value: 55
|
| 448 |
- task:
|
| 449 |
type: Sentence completion
|
| 450 |
dataset:
|
|
@@ -455,7 +466,7 @@ model-index:
|
|
| 455 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 456 |
metrics:
|
| 457 |
- type: Accuracy
|
| 458 |
-
value: 52
|
| 459 |
- task:
|
| 460 |
type: Sentence completion
|
| 461 |
dataset:
|
|
@@ -466,7 +477,7 @@ model-index:
|
|
| 466 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 467 |
metrics:
|
| 468 |
- type: Accuracy
|
| 469 |
-
value: 60
|
| 470 |
- task:
|
| 471 |
type: Sentence completion
|
| 472 |
dataset:
|
|
@@ -477,7 +488,7 @@ model-index:
|
|
| 477 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 478 |
metrics:
|
| 479 |
- type: Accuracy
|
| 480 |
-
value: 55
|
| 481 |
- task:
|
| 482 |
type: Sentence completion
|
| 483 |
dataset:
|
|
@@ -488,7 +499,7 @@ model-index:
|
|
| 488 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 489 |
metrics:
|
| 490 |
- type: Accuracy
|
| 491 |
-
value: 61
|
| 492 |
- task:
|
| 493 |
type: Sentence completion
|
| 494 |
dataset:
|
|
@@ -499,7 +510,7 @@ model-index:
|
|
| 499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 500 |
metrics:
|
| 501 |
- type: Accuracy
|
| 502 |
-
value: 55
|
| 503 |
- task:
|
| 504 |
type: Sentence completion
|
| 505 |
dataset:
|
|
@@ -510,7 +521,7 @@ model-index:
|
|
| 510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 511 |
metrics:
|
| 512 |
- type: Accuracy
|
| 513 |
-
value: 59
|
| 514 |
- task:
|
| 515 |
type: Sentence completion
|
| 516 |
dataset:
|
|
@@ -521,7 +532,7 @@ model-index:
|
|
| 521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 522 |
metrics:
|
| 523 |
- type: Accuracy
|
| 524 |
-
value: 63
|
| 525 |
- task:
|
| 526 |
type: Sentence completion
|
| 527 |
dataset:
|
|
@@ -532,7 +543,7 @@ model-index:
|
|
| 532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 533 |
metrics:
|
| 534 |
- type: Accuracy
|
| 535 |
-
value: 55
|
| 536 |
- task:
|
| 537 |
type: Sentence completion
|
| 538 |
dataset:
|
|
@@ -543,7 +554,7 @@ model-index:
|
|
| 543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 544 |
metrics:
|
| 545 |
- type: Accuracy
|
| 546 |
-
value: 60
|
| 547 |
- task:
|
| 548 |
type: Sentence completion
|
| 549 |
dataset:
|
|
@@ -554,7 +565,7 @@ model-index:
|
|
| 554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 555 |
metrics:
|
| 556 |
- type: Accuracy
|
| 557 |
-
value: 52
|
| 558 |
- task:
|
| 559 |
type: Sentence completion
|
| 560 |
dataset:
|
|
@@ -565,7 +576,7 @@ model-index:
|
|
| 565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 566 |
metrics:
|
| 567 |
- type: Accuracy
|
| 568 |
-
value: 58
|
| 569 |
- task:
|
| 570 |
type: Sentence completion
|
| 571 |
dataset:
|
|
@@ -609,7 +620,7 @@ model-index:
|
|
| 609 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
| 610 |
metrics:
|
| 611 |
- type: Accuracy
|
| 612 |
-
value: 55
|
| 613 |
- task:
|
| 614 |
type: Sentence completion
|
| 615 |
dataset:
|
|
|
|
| 69 |
- my
|
| 70 |
- ne
|
| 71 |
- nl
|
| 72 |
+
- 'no'
|
| 73 |
- ny
|
| 74 |
- pa
|
| 75 |
- pl
|
|
|
|
| 105 |
- yo
|
| 106 |
- zh
|
| 107 |
- zu
|
| 108 |
+
pipeline_tag: text2text-generation
|
| 109 |
widget:
|
| 110 |
+
- text: >-
|
| 111 |
+
一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
| 112 |
+
review as positive, neutral or negative?
|
| 113 |
+
example_title: zh-en sentiment
|
| 114 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
| 115 |
+
example_title: zh-zh sentiment
|
| 116 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
| 117 |
+
example_title: vi-en query
|
| 118 |
+
- text: >-
|
| 119 |
+
Proposez au moins cinq mots clés concernant «Réseau de neurones
|
| 120 |
+
artificiels».
|
| 121 |
+
example_title: fr-fr query
|
| 122 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
| 123 |
+
example_title: te-en qa
|
| 124 |
+
- text: Why is the sky blue?
|
| 125 |
+
example_title: en-en qa
|
| 126 |
+
- text: >-
|
| 127 |
+
Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
| 128 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its
|
| 129 |
+
moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
|
| 130 |
+
example_title: es-en fable
|
| 131 |
+
- text: >-
|
| 132 |
+
Write a fable about wood elves living in a forest that is suddenly invaded
|
| 133 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and
|
| 134 |
+
its moral is "Violence is the last refuge of the incompetent". Fable (in
|
| 135 |
+
Hindi):
|
| 136 |
+
example_title: hi-en fable
|
| 137 |
model-index:
|
| 138 |
- name: mt0-base
|
| 139 |
results:
|
|
|
|
| 257 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 258 |
metrics:
|
| 259 |
- type: Accuracy
|
| 260 |
+
value: 50
|
| 261 |
- task:
|
| 262 |
type: Natural language inference
|
| 263 |
dataset:
|
|
|
|
| 439 |
dataset:
|
| 440 |
type: story_cloze
|
| 441 |
name: StoryCloze (2016)
|
| 442 |
+
config: '2016'
|
| 443 |
split: validation
|
| 444 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
| 445 |
metrics:
|
|
|
|
| 455 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
| 456 |
metrics:
|
| 457 |
- type: Accuracy
|
| 458 |
+
value: 55
|
| 459 |
- task:
|
| 460 |
type: Sentence completion
|
| 461 |
dataset:
|
|
|
|
| 466 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 467 |
metrics:
|
| 468 |
- type: Accuracy
|
| 469 |
+
value: 52
|
| 470 |
- task:
|
| 471 |
type: Sentence completion
|
| 472 |
dataset:
|
|
|
|
| 477 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 478 |
metrics:
|
| 479 |
- type: Accuracy
|
| 480 |
+
value: 60
|
| 481 |
- task:
|
| 482 |
type: Sentence completion
|
| 483 |
dataset:
|
|
|
|
| 488 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 489 |
metrics:
|
| 490 |
- type: Accuracy
|
| 491 |
+
value: 55
|
| 492 |
- task:
|
| 493 |
type: Sentence completion
|
| 494 |
dataset:
|
|
|
|
| 499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 500 |
metrics:
|
| 501 |
- type: Accuracy
|
| 502 |
+
value: 61
|
| 503 |
- task:
|
| 504 |
type: Sentence completion
|
| 505 |
dataset:
|
|
|
|
| 510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 511 |
metrics:
|
| 512 |
- type: Accuracy
|
| 513 |
+
value: 55
|
| 514 |
- task:
|
| 515 |
type: Sentence completion
|
| 516 |
dataset:
|
|
|
|
| 521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 522 |
metrics:
|
| 523 |
- type: Accuracy
|
| 524 |
+
value: 59
|
| 525 |
- task:
|
| 526 |
type: Sentence completion
|
| 527 |
dataset:
|
|
|
|
| 532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 533 |
metrics:
|
| 534 |
- type: Accuracy
|
| 535 |
+
value: 63
|
| 536 |
- task:
|
| 537 |
type: Sentence completion
|
| 538 |
dataset:
|
|
|
|
| 543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 544 |
metrics:
|
| 545 |
- type: Accuracy
|
| 546 |
+
value: 55
|
| 547 |
- task:
|
| 548 |
type: Sentence completion
|
| 549 |
dataset:
|
|
|
|
| 554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 555 |
metrics:
|
| 556 |
- type: Accuracy
|
| 557 |
+
value: 60
|
| 558 |
- task:
|
| 559 |
type: Sentence completion
|
| 560 |
dataset:
|
|
|
|
| 565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 566 |
metrics:
|
| 567 |
- type: Accuracy
|
| 568 |
+
value: 52
|
| 569 |
- task:
|
| 570 |
type: Sentence completion
|
| 571 |
dataset:
|
|
|
|
| 576 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
| 577 |
metrics:
|
| 578 |
- type: Accuracy
|
| 579 |
+
value: 58
|
| 580 |
- task:
|
| 581 |
type: Sentence completion
|
| 582 |
dataset:
|
|
|
|
| 620 |
revision: 8bb76e594b68147f1a430e86829d07189622b90d
|
| 621 |
metrics:
|
| 622 |
- type: Accuracy
|
| 623 |
+
value: 55
|
| 624 |
- task:
|
| 625 |
type: Sentence completion
|
| 626 |
dataset:
|