Banghua Zhu
		
	commited on
		
		
					Commit 
							
							·
						
						6f8f5dc
	
0
								Parent(s):
							
							
Duplicate from banghua/n_rm
Browse files- .gitattributes +35 -0
 - global_step1400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
 - global_step1400/mp_rank_00_model_states.pt +3 -0
 - latest +1 -0
 - pytorch_model.bin +3 -0
 - rng_state_0.pth +3 -0
 - rng_state_1.pth +3 -0
 - rng_state_2.pth +3 -0
 - rng_state_3.pth +3 -0
 - rng_state_4.pth +3 -0
 - rng_state_5.pth +3 -0
 - rng_state_6.pth +3 -0
 - rng_state_7.pth +3 -0
 - trainer_state.json +985 -0
 - training_args.bin +3 -0
 - zero_to_fp32.py +587 -0
 
    	
        .gitattributes
    ADDED
    
    | 
         @@ -0,0 +1,35 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         
     | 
| 2 | 
         
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         
     | 
| 3 | 
         
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         
     | 
| 4 | 
         
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 5 | 
         
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 6 | 
         
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 7 | 
         
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 8 | 
         
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 9 | 
         
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         
     | 
| 10 | 
         
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 11 | 
         
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         
     | 
| 12 | 
         
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         
     | 
| 13 | 
         
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         
     | 
| 14 | 
         
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         
     | 
| 15 | 
         
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 16 | 
         
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         
     | 
| 17 | 
         
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         
     | 
| 18 | 
         
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         
     | 
| 19 | 
         
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         
     | 
| 20 | 
         
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         
     | 
| 21 | 
         
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         
     | 
| 22 | 
         
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 23 | 
         
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         
     | 
| 24 | 
         
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 25 | 
         
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         
     | 
| 26 | 
         
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 27 | 
         
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 28 | 
         
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 29 | 
         
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         
     | 
| 30 | 
         
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 31 | 
         
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         
     | 
| 32 | 
         
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 33 | 
         
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:964dfeff5337bbeaf204f228250b1f0c0a9a34b53cac198d9eb922b694fee53e
         
     | 
| 3 | 
         
            +
            size 10107635127
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:02703e0fb94a05ed844c3f5fb0fdd4dff63a33d42a5899717cf27360074ba597
         
     | 
| 3 | 
         
            +
            size 10107635511
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:5a1d87dc115f836f3b418f2c0629cccdf8faa4821b7f0d75f550266236414339
         
     | 
| 3 | 
         
            +
            size 10107635511
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:f5ca02c175d6db6d53531a8384558640f08b9feef50a5fe267dd43caa13b084c
         
     | 
| 3 | 
         
            +
            size 10107635703
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:f530314f97b676a3a2074902239ae721333eadf3909a5ab9b552590935863623
         
     | 
| 3 | 
         
            +
            size 10107635575
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7803dbd98dfd3cb2e46e9ade255baf1151c332d79849d8c26b4f36f3ce9aac27
         
     | 
| 3 | 
         
            +
            size 10107635639
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:e1acdf3066c608dd50252cc6c12a6b17d13033e0a62f5bad1192e679b6f73f6b
         
     | 
| 3 | 
         
            +
            size 10107635575
         
     | 
    	
        global_step1400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:19680cdfcf02f32d10f4c744adff0dedd1405b7e9672d677cacb85039200ab64
         
     | 
| 3 | 
         
            +
            size 10107635255
         
     | 
    	
        global_step1400/mp_rank_00_model_states.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:5b2d03e9f8d039c27856dee853487a996b9033e94ae8a820571657e9b9f4d74c
         
     | 
| 3 | 
         
            +
            size 13477033283
         
     | 
    	
        latest
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            global_step1400
         
     | 
    	
        pytorch_model.bin
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:e822738b1730aee4bcd4695d25836907dd3b98dff1ac112260d89c2085c0a743
         
     | 
| 3 | 
         
            +
            size 26691724373
         
     | 
    	
        rng_state_0.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:4077b34b03f79b052bd53a09b269b2df2b9b4edbba886d14e19bc0ff6508ab00
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_1.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6d6fc2e3e4688f0af35b81181a28d78078f10a4e63237915ef2e25612318a5b3
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_2.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:b48f9dd20406c2f7ee61d289c703091bfb05aca0d3d4bc461fec41b66d43bfa5
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_3.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:a513659dd182753b05daade475bbf0a51cfafbb0119721a6e1b8d60c45dacdb1
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_4.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:130f08688b3d017d9a1c2ac8ef50fa6d9637aa718b7ae19c54fd23cfd35490c2
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_5.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:22929ee481c4bff4217495b52b918cafcda752ff40c793ba1081d43d57f7fa58
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_6.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:98553316d85e76503cf36b5f7bf067dd5c1d3db5fda7842498a035a54c847a32
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        rng_state_7.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:e6d3a685adbcf6a9447697719aec403e5cd0262aa6decadfb656356ede6df4e8
         
     | 
| 3 | 
         
            +
            size 21687
         
     | 
    	
        trainer_state.json
    ADDED
    
    | 
         @@ -0,0 +1,985 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "best_metric": 0.2997502386569977,
         
     | 
| 3 | 
         
            +
              "best_model_checkpoint": "rm_ckptreward-p100-w0.3-s0/checkpoint-1400",
         
     | 
| 4 | 
         
            +
              "epoch": 0.8934269304403318,
         
     | 
| 5 | 
         
            +
              "eval_steps": 200,
         
     | 
| 6 | 
         
            +
              "global_step": 1400,
         
     | 
| 7 | 
         
            +
              "is_hyper_param_search": false,
         
     | 
| 8 | 
         
            +
              "is_local_process_zero": true,
         
     | 
| 9 | 
         
            +
              "is_world_process_zero": true,
         
     | 
| 10 | 
         
            +
              "log_history": [
         
     | 
| 11 | 
         
            +
                {
         
     | 
| 12 | 
         
            +
                  "epoch": 0.01,
         
     | 
| 13 | 
         
            +
                  "learning_rate": 4.9999999999999996e-06,
         
     | 
| 14 | 
         
            +
                  "loss": 0.3897,
         
     | 
| 15 | 
         
            +
                  "step": 10
         
     | 
| 16 | 
         
            +
                },
         
     | 
| 17 | 
         
            +
                {
         
     | 
| 18 | 
         
            +
                  "epoch": 0.01,
         
     | 
| 19 | 
         
            +
                  "learning_rate": 6.505149978319905e-06,
         
     | 
| 20 | 
         
            +
                  "loss": 0.3441,
         
     | 
| 21 | 
         
            +
                  "step": 20
         
     | 
| 22 | 
         
            +
                },
         
     | 
| 23 | 
         
            +
                {
         
     | 
| 24 | 
         
            +
                  "epoch": 0.02,
         
     | 
| 25 | 
         
            +
                  "learning_rate": 7.385606273598311e-06,
         
     | 
| 26 | 
         
            +
                  "loss": 0.326,
         
     | 
| 27 | 
         
            +
                  "step": 30
         
     | 
| 28 | 
         
            +
                },
         
     | 
| 29 | 
         
            +
                {
         
     | 
| 30 | 
         
            +
                  "epoch": 0.03,
         
     | 
| 31 | 
         
            +
                  "learning_rate": 8.010299956639811e-06,
         
     | 
| 32 | 
         
            +
                  "loss": 0.3131,
         
     | 
| 33 | 
         
            +
                  "step": 40
         
     | 
| 34 | 
         
            +
                },
         
     | 
| 35 | 
         
            +
                {
         
     | 
| 36 | 
         
            +
                  "epoch": 0.03,
         
     | 
| 37 | 
         
            +
                  "learning_rate": 8.494850021680093e-06,
         
     | 
| 38 | 
         
            +
                  "loss": 0.3187,
         
     | 
| 39 | 
         
            +
                  "step": 50
         
     | 
| 40 | 
         
            +
                },
         
     | 
| 41 | 
         
            +
                {
         
     | 
| 42 | 
         
            +
                  "epoch": 0.04,
         
     | 
| 43 | 
         
            +
                  "learning_rate": 8.890756251918216e-06,
         
     | 
| 44 | 
         
            +
                  "loss": 0.3105,
         
     | 
| 45 | 
         
            +
                  "step": 60
         
     | 
| 46 | 
         
            +
                },
         
     | 
| 47 | 
         
            +
                {
         
     | 
| 48 | 
         
            +
                  "epoch": 0.04,
         
     | 
| 49 | 
         
            +
                  "learning_rate": 9.225490200071284e-06,
         
     | 
| 50 | 
         
            +
                  "loss": 0.3137,
         
     | 
| 51 | 
         
            +
                  "step": 70
         
     | 
| 52 | 
         
            +
                },
         
     | 
| 53 | 
         
            +
                {
         
     | 
| 54 | 
         
            +
                  "epoch": 0.05,
         
     | 
| 55 | 
         
            +
                  "learning_rate": 9.515449934959717e-06,
         
     | 
| 56 | 
         
            +
                  "loss": 0.3115,
         
     | 
| 57 | 
         
            +
                  "step": 80
         
     | 
| 58 | 
         
            +
                },
         
     | 
| 59 | 
         
            +
                {
         
     | 
| 60 | 
         
            +
                  "epoch": 0.06,
         
     | 
| 61 | 
         
            +
                  "learning_rate": 9.771212547196623e-06,
         
     | 
| 62 | 
         
            +
                  "loss": 0.309,
         
     | 
| 63 | 
         
            +
                  "step": 90
         
     | 
| 64 | 
         
            +
                },
         
     | 
| 65 | 
         
            +
                {
         
     | 
| 66 | 
         
            +
                  "epoch": 0.06,
         
     | 
| 67 | 
         
            +
                  "learning_rate": 9.999999999999999e-06,
         
     | 
| 68 | 
         
            +
                  "loss": 0.3073,
         
     | 
| 69 | 
         
            +
                  "step": 100
         
     | 
| 70 | 
         
            +
                },
         
     | 
| 71 | 
         
            +
                {
         
     | 
| 72 | 
         
            +
                  "epoch": 0.07,
         
     | 
| 73 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 74 | 
         
            +
                  "loss": 0.3152,
         
     | 
| 75 | 
         
            +
                  "step": 110
         
     | 
| 76 | 
         
            +
                },
         
     | 
| 77 | 
         
            +
                {
         
     | 
| 78 | 
         
            +
                  "epoch": 0.08,
         
     | 
| 79 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 80 | 
         
            +
                  "loss": 0.3064,
         
     | 
| 81 | 
         
            +
                  "step": 120
         
     | 
| 82 | 
         
            +
                },
         
     | 
| 83 | 
         
            +
                {
         
     | 
| 84 | 
         
            +
                  "epoch": 0.08,
         
     | 
| 85 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 86 | 
         
            +
                  "loss": 0.3094,
         
     | 
| 87 | 
         
            +
                  "step": 130
         
     | 
| 88 | 
         
            +
                },
         
     | 
| 89 | 
         
            +
                {
         
     | 
| 90 | 
         
            +
                  "epoch": 0.09,
         
     | 
| 91 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 92 | 
         
            +
                  "loss": 0.3009,
         
     | 
| 93 | 
         
            +
                  "step": 140
         
     | 
| 94 | 
         
            +
                },
         
     | 
| 95 | 
         
            +
                {
         
     | 
| 96 | 
         
            +
                  "epoch": 0.1,
         
     | 
| 97 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 98 | 
         
            +
                  "loss": 0.3041,
         
     | 
| 99 | 
         
            +
                  "step": 150
         
     | 
| 100 | 
         
            +
                },
         
     | 
| 101 | 
         
            +
                {
         
     | 
| 102 | 
         
            +
                  "epoch": 0.1,
         
     | 
| 103 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 104 | 
         
            +
                  "loss": 0.305,
         
     | 
| 105 | 
         
            +
                  "step": 160
         
     | 
| 106 | 
         
            +
                },
         
     | 
| 107 | 
         
            +
                {
         
     | 
| 108 | 
         
            +
                  "epoch": 0.11,
         
     | 
| 109 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 110 | 
         
            +
                  "loss": 0.304,
         
     | 
| 111 | 
         
            +
                  "step": 170
         
     | 
| 112 | 
         
            +
                },
         
     | 
| 113 | 
         
            +
                {
         
     | 
| 114 | 
         
            +
                  "epoch": 0.11,
         
     | 
| 115 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 116 | 
         
            +
                  "loss": 0.2999,
         
     | 
| 117 | 
         
            +
                  "step": 180
         
     | 
| 118 | 
         
            +
                },
         
     | 
| 119 | 
         
            +
                {
         
     | 
| 120 | 
         
            +
                  "epoch": 0.12,
         
     | 
| 121 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 122 | 
         
            +
                  "loss": 0.3095,
         
     | 
| 123 | 
         
            +
                  "step": 190
         
     | 
| 124 | 
         
            +
                },
         
     | 
| 125 | 
         
            +
                {
         
     | 
| 126 | 
         
            +
                  "epoch": 0.13,
         
     | 
| 127 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 128 | 
         
            +
                  "loss": 0.3042,
         
     | 
| 129 | 
         
            +
                  "step": 200
         
     | 
| 130 | 
         
            +
                },
         
     | 
| 131 | 
         
            +
                {
         
     | 
| 132 | 
         
            +
                  "epoch": 0.13,
         
     | 
| 133 | 
         
            +
                  "eval_val_accuracy": 896.5238095238095,
         
     | 
| 134 | 
         
            +
                  "eval_val_loss": 0.30677446722984314,
         
     | 
| 135 | 
         
            +
                  "eval_val_runtime": 2250.4996,
         
     | 
| 136 | 
         
            +
                  "eval_val_samples_per_second": 4.443,
         
     | 
| 137 | 
         
            +
                  "eval_val_steps_per_second": 0.555,
         
     | 
| 138 | 
         
            +
                  "step": 200
         
     | 
| 139 | 
         
            +
                },
         
     | 
| 140 | 
         
            +
                {
         
     | 
| 141 | 
         
            +
                  "epoch": 0.13,
         
     | 
| 142 | 
         
            +
                  "eval_test_accuracy": 898.6904761904761,
         
     | 
| 143 | 
         
            +
                  "eval_test_loss": 0.30444496870040894,
         
     | 
| 144 | 
         
            +
                  "eval_test_runtime": 2251.863,
         
     | 
| 145 | 
         
            +
                  "eval_test_samples_per_second": 4.441,
         
     | 
| 146 | 
         
            +
                  "eval_test_steps_per_second": 0.555,
         
     | 
| 147 | 
         
            +
                  "step": 200
         
     | 
| 148 | 
         
            +
                },
         
     | 
| 149 | 
         
            +
                {
         
     | 
| 150 | 
         
            +
                  "epoch": 0.13,
         
     | 
| 151 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 152 | 
         
            +
                  "loss": 0.3018,
         
     | 
| 153 | 
         
            +
                  "step": 210
         
     | 
| 154 | 
         
            +
                },
         
     | 
| 155 | 
         
            +
                {
         
     | 
| 156 | 
         
            +
                  "epoch": 0.14,
         
     | 
| 157 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 158 | 
         
            +
                  "loss": 0.3078,
         
     | 
| 159 | 
         
            +
                  "step": 220
         
     | 
| 160 | 
         
            +
                },
         
     | 
| 161 | 
         
            +
                {
         
     | 
| 162 | 
         
            +
                  "epoch": 0.15,
         
     | 
| 163 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 164 | 
         
            +
                  "loss": 0.3028,
         
     | 
| 165 | 
         
            +
                  "step": 230
         
     | 
| 166 | 
         
            +
                },
         
     | 
| 167 | 
         
            +
                {
         
     | 
| 168 | 
         
            +
                  "epoch": 0.15,
         
     | 
| 169 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 170 | 
         
            +
                  "loss": 0.3043,
         
     | 
| 171 | 
         
            +
                  "step": 240
         
     | 
| 172 | 
         
            +
                },
         
     | 
| 173 | 
         
            +
                {
         
     | 
| 174 | 
         
            +
                  "epoch": 0.16,
         
     | 
| 175 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 176 | 
         
            +
                  "loss": 0.3081,
         
     | 
| 177 | 
         
            +
                  "step": 250
         
     | 
| 178 | 
         
            +
                },
         
     | 
| 179 | 
         
            +
                {
         
     | 
| 180 | 
         
            +
                  "epoch": 0.17,
         
     | 
| 181 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 182 | 
         
            +
                  "loss": 0.3056,
         
     | 
| 183 | 
         
            +
                  "step": 260
         
     | 
| 184 | 
         
            +
                },
         
     | 
| 185 | 
         
            +
                {
         
     | 
| 186 | 
         
            +
                  "epoch": 0.17,
         
     | 
| 187 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 188 | 
         
            +
                  "loss": 0.3083,
         
     | 
| 189 | 
         
            +
                  "step": 270
         
     | 
| 190 | 
         
            +
                },
         
     | 
| 191 | 
         
            +
                {
         
     | 
| 192 | 
         
            +
                  "epoch": 0.18,
         
     | 
| 193 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 194 | 
         
            +
                  "loss": 0.3,
         
     | 
| 195 | 
         
            +
                  "step": 280
         
     | 
| 196 | 
         
            +
                },
         
     | 
| 197 | 
         
            +
                {
         
     | 
| 198 | 
         
            +
                  "epoch": 0.19,
         
     | 
| 199 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 200 | 
         
            +
                  "loss": 0.3036,
         
     | 
| 201 | 
         
            +
                  "step": 290
         
     | 
| 202 | 
         
            +
                },
         
     | 
| 203 | 
         
            +
                {
         
     | 
| 204 | 
         
            +
                  "epoch": 0.19,
         
     | 
| 205 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 206 | 
         
            +
                  "loss": 0.307,
         
     | 
| 207 | 
         
            +
                  "step": 300
         
     | 
| 208 | 
         
            +
                },
         
     | 
| 209 | 
         
            +
                {
         
     | 
| 210 | 
         
            +
                  "epoch": 0.2,
         
     | 
| 211 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 212 | 
         
            +
                  "loss": 0.3029,
         
     | 
| 213 | 
         
            +
                  "step": 310
         
     | 
| 214 | 
         
            +
                },
         
     | 
| 215 | 
         
            +
                {
         
     | 
| 216 | 
         
            +
                  "epoch": 0.2,
         
     | 
| 217 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 218 | 
         
            +
                  "loss": 0.3035,
         
     | 
| 219 | 
         
            +
                  "step": 320
         
     | 
| 220 | 
         
            +
                },
         
     | 
| 221 | 
         
            +
                {
         
     | 
| 222 | 
         
            +
                  "epoch": 0.21,
         
     | 
| 223 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 224 | 
         
            +
                  "loss": 0.3052,
         
     | 
| 225 | 
         
            +
                  "step": 330
         
     | 
| 226 | 
         
            +
                },
         
     | 
| 227 | 
         
            +
                {
         
     | 
| 228 | 
         
            +
                  "epoch": 0.22,
         
     | 
| 229 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 230 | 
         
            +
                  "loss": 0.3034,
         
     | 
| 231 | 
         
            +
                  "step": 340
         
     | 
| 232 | 
         
            +
                },
         
     | 
| 233 | 
         
            +
                {
         
     | 
| 234 | 
         
            +
                  "epoch": 0.22,
         
     | 
| 235 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 236 | 
         
            +
                  "loss": 0.3012,
         
     | 
| 237 | 
         
            +
                  "step": 350
         
     | 
| 238 | 
         
            +
                },
         
     | 
| 239 | 
         
            +
                {
         
     | 
| 240 | 
         
            +
                  "epoch": 0.23,
         
     | 
| 241 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 242 | 
         
            +
                  "loss": 0.3023,
         
     | 
| 243 | 
         
            +
                  "step": 360
         
     | 
| 244 | 
         
            +
                },
         
     | 
| 245 | 
         
            +
                {
         
     | 
| 246 | 
         
            +
                  "epoch": 0.24,
         
     | 
| 247 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 248 | 
         
            +
                  "loss": 0.305,
         
     | 
| 249 | 
         
            +
                  "step": 370
         
     | 
| 250 | 
         
            +
                },
         
     | 
| 251 | 
         
            +
                {
         
     | 
| 252 | 
         
            +
                  "epoch": 0.24,
         
     | 
| 253 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 254 | 
         
            +
                  "loss": 0.3075,
         
     | 
| 255 | 
         
            +
                  "step": 380
         
     | 
| 256 | 
         
            +
                },
         
     | 
| 257 | 
         
            +
                {
         
     | 
| 258 | 
         
            +
                  "epoch": 0.25,
         
     | 
| 259 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 260 | 
         
            +
                  "loss": 0.3043,
         
     | 
| 261 | 
         
            +
                  "step": 390
         
     | 
| 262 | 
         
            +
                },
         
     | 
| 263 | 
         
            +
                {
         
     | 
| 264 | 
         
            +
                  "epoch": 0.26,
         
     | 
| 265 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 266 | 
         
            +
                  "loss": 0.302,
         
     | 
| 267 | 
         
            +
                  "step": 400
         
     | 
| 268 | 
         
            +
                },
         
     | 
| 269 | 
         
            +
                {
         
     | 
| 270 | 
         
            +
                  "epoch": 0.26,
         
     | 
| 271 | 
         
            +
                  "eval_val_accuracy": 901.1428571428571,
         
     | 
| 272 | 
         
            +
                  "eval_val_loss": 0.3049960434436798,
         
     | 
| 273 | 
         
            +
                  "eval_val_runtime": 2251.3044,
         
     | 
| 274 | 
         
            +
                  "eval_val_samples_per_second": 4.442,
         
     | 
| 275 | 
         
            +
                  "eval_val_steps_per_second": 0.555,
         
     | 
| 276 | 
         
            +
                  "step": 400
         
     | 
| 277 | 
         
            +
                },
         
     | 
| 278 | 
         
            +
                {
         
     | 
| 279 | 
         
            +
                  "epoch": 0.26,
         
     | 
| 280 | 
         
            +
                  "eval_test_accuracy": 902.547619047619,
         
     | 
| 281 | 
         
            +
                  "eval_test_loss": 0.3042500615119934,
         
     | 
| 282 | 
         
            +
                  "eval_test_runtime": 2251.0717,
         
     | 
| 283 | 
         
            +
                  "eval_test_samples_per_second": 4.442,
         
     | 
| 284 | 
         
            +
                  "eval_test_steps_per_second": 0.555,
         
     | 
| 285 | 
         
            +
                  "step": 400
         
     | 
| 286 | 
         
            +
                },
         
     | 
| 287 | 
         
            +
                {
         
     | 
| 288 | 
         
            +
                  "epoch": 0.26,
         
     | 
| 289 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 290 | 
         
            +
                  "loss": 0.2984,
         
     | 
| 291 | 
         
            +
                  "step": 410
         
     | 
| 292 | 
         
            +
                },
         
     | 
| 293 | 
         
            +
                {
         
     | 
| 294 | 
         
            +
                  "epoch": 0.27,
         
     | 
| 295 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 296 | 
         
            +
                  "loss": 0.3001,
         
     | 
| 297 | 
         
            +
                  "step": 420
         
     | 
| 298 | 
         
            +
                },
         
     | 
| 299 | 
         
            +
                {
         
     | 
| 300 | 
         
            +
                  "epoch": 0.27,
         
     | 
| 301 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 302 | 
         
            +
                  "loss": 0.3034,
         
     | 
| 303 | 
         
            +
                  "step": 430
         
     | 
| 304 | 
         
            +
                },
         
     | 
| 305 | 
         
            +
                {
         
     | 
| 306 | 
         
            +
                  "epoch": 0.28,
         
     | 
| 307 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 308 | 
         
            +
                  "loss": 0.3005,
         
     | 
| 309 | 
         
            +
                  "step": 440
         
     | 
| 310 | 
         
            +
                },
         
     | 
| 311 | 
         
            +
                {
         
     | 
| 312 | 
         
            +
                  "epoch": 0.29,
         
     | 
| 313 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 314 | 
         
            +
                  "loss": 0.308,
         
     | 
| 315 | 
         
            +
                  "step": 450
         
     | 
| 316 | 
         
            +
                },
         
     | 
| 317 | 
         
            +
                {
         
     | 
| 318 | 
         
            +
                  "epoch": 0.29,
         
     | 
| 319 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 320 | 
         
            +
                  "loss": 0.3011,
         
     | 
| 321 | 
         
            +
                  "step": 460
         
     | 
| 322 | 
         
            +
                },
         
     | 
| 323 | 
         
            +
                {
         
     | 
| 324 | 
         
            +
                  "epoch": 0.3,
         
     | 
| 325 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 326 | 
         
            +
                  "loss": 0.3038,
         
     | 
| 327 | 
         
            +
                  "step": 470
         
     | 
| 328 | 
         
            +
                },
         
     | 
| 329 | 
         
            +
                {
         
     | 
| 330 | 
         
            +
                  "epoch": 0.31,
         
     | 
| 331 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 332 | 
         
            +
                  "loss": 0.2988,
         
     | 
| 333 | 
         
            +
                  "step": 480
         
     | 
| 334 | 
         
            +
                },
         
     | 
| 335 | 
         
            +
                {
         
     | 
| 336 | 
         
            +
                  "epoch": 0.31,
         
     | 
| 337 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 338 | 
         
            +
                  "loss": 0.3057,
         
     | 
| 339 | 
         
            +
                  "step": 490
         
     | 
| 340 | 
         
            +
                },
         
     | 
| 341 | 
         
            +
                {
         
     | 
| 342 | 
         
            +
                  "epoch": 0.32,
         
     | 
| 343 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 344 | 
         
            +
                  "loss": 0.3077,
         
     | 
| 345 | 
         
            +
                  "step": 500
         
     | 
| 346 | 
         
            +
                },
         
     | 
| 347 | 
         
            +
                {
         
     | 
| 348 | 
         
            +
                  "epoch": 0.33,
         
     | 
| 349 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 350 | 
         
            +
                  "loss": 0.2962,
         
     | 
| 351 | 
         
            +
                  "step": 510
         
     | 
| 352 | 
         
            +
                },
         
     | 
| 353 | 
         
            +
                {
         
     | 
| 354 | 
         
            +
                  "epoch": 0.33,
         
     | 
| 355 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 356 | 
         
            +
                  "loss": 0.3074,
         
     | 
| 357 | 
         
            +
                  "step": 520
         
     | 
| 358 | 
         
            +
                },
         
     | 
| 359 | 
         
            +
                {
         
     | 
| 360 | 
         
            +
                  "epoch": 0.34,
         
     | 
| 361 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 362 | 
         
            +
                  "loss": 0.2979,
         
     | 
| 363 | 
         
            +
                  "step": 530
         
     | 
| 364 | 
         
            +
                },
         
     | 
| 365 | 
         
            +
                {
         
     | 
| 366 | 
         
            +
                  "epoch": 0.34,
         
     | 
| 367 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 368 | 
         
            +
                  "loss": 0.3027,
         
     | 
| 369 | 
         
            +
                  "step": 540
         
     | 
| 370 | 
         
            +
                },
         
     | 
| 371 | 
         
            +
                {
         
     | 
| 372 | 
         
            +
                  "epoch": 0.35,
         
     | 
| 373 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 374 | 
         
            +
                  "loss": 0.2993,
         
     | 
| 375 | 
         
            +
                  "step": 550
         
     | 
| 376 | 
         
            +
                },
         
     | 
| 377 | 
         
            +
                {
         
     | 
| 378 | 
         
            +
                  "epoch": 0.36,
         
     | 
| 379 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 380 | 
         
            +
                  "loss": 0.3006,
         
     | 
| 381 | 
         
            +
                  "step": 560
         
     | 
| 382 | 
         
            +
                },
         
     | 
| 383 | 
         
            +
                {
         
     | 
| 384 | 
         
            +
                  "epoch": 0.36,
         
     | 
| 385 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 386 | 
         
            +
                  "loss": 0.3018,
         
     | 
| 387 | 
         
            +
                  "step": 570
         
     | 
| 388 | 
         
            +
                },
         
     | 
| 389 | 
         
            +
                {
         
     | 
| 390 | 
         
            +
                  "epoch": 0.37,
         
     | 
| 391 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 392 | 
         
            +
                  "loss": 0.3009,
         
     | 
| 393 | 
         
            +
                  "step": 580
         
     | 
| 394 | 
         
            +
                },
         
     | 
| 395 | 
         
            +
                {
         
     | 
| 396 | 
         
            +
                  "epoch": 0.38,
         
     | 
| 397 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 398 | 
         
            +
                  "loss": 0.2983,
         
     | 
| 399 | 
         
            +
                  "step": 590
         
     | 
| 400 | 
         
            +
                },
         
     | 
| 401 | 
         
            +
                {
         
     | 
| 402 | 
         
            +
                  "epoch": 0.38,
         
     | 
| 403 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 404 | 
         
            +
                  "loss": 0.2968,
         
     | 
| 405 | 
         
            +
                  "step": 600
         
     | 
| 406 | 
         
            +
                },
         
     | 
| 407 | 
         
            +
                {
         
     | 
| 408 | 
         
            +
                  "epoch": 0.38,
         
     | 
| 409 | 
         
            +
                  "eval_val_accuracy": 902.4047619047618,
         
     | 
| 410 | 
         
            +
                  "eval_val_loss": 0.30277058482170105,
         
     | 
| 411 | 
         
            +
                  "eval_val_runtime": 2248.9082,
         
     | 
| 412 | 
         
            +
                  "eval_val_samples_per_second": 4.447,
         
     | 
| 413 | 
         
            +
                  "eval_val_steps_per_second": 0.556,
         
     | 
| 414 | 
         
            +
                  "step": 600
         
     | 
| 415 | 
         
            +
                },
         
     | 
| 416 | 
         
            +
                {
         
     | 
| 417 | 
         
            +
                  "epoch": 0.38,
         
     | 
| 418 | 
         
            +
                  "eval_test_accuracy": 904.8809523809524,
         
     | 
| 419 | 
         
            +
                  "eval_test_loss": 0.3016507923603058,
         
     | 
| 420 | 
         
            +
                  "eval_test_runtime": 2249.9795,
         
     | 
| 421 | 
         
            +
                  "eval_test_samples_per_second": 4.444,
         
     | 
| 422 | 
         
            +
                  "eval_test_steps_per_second": 0.556,
         
     | 
| 423 | 
         
            +
                  "step": 600
         
     | 
| 424 | 
         
            +
                },
         
     | 
| 425 | 
         
            +
                {
         
     | 
| 426 | 
         
            +
                  "epoch": 0.39,
         
     | 
| 427 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 428 | 
         
            +
                  "loss": 0.3034,
         
     | 
| 429 | 
         
            +
                  "step": 610
         
     | 
| 430 | 
         
            +
                },
         
     | 
| 431 | 
         
            +
                {
         
     | 
| 432 | 
         
            +
                  "epoch": 0.4,
         
     | 
| 433 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 434 | 
         
            +
                  "loss": 0.304,
         
     | 
| 435 | 
         
            +
                  "step": 620
         
     | 
| 436 | 
         
            +
                },
         
     | 
| 437 | 
         
            +
                {
         
     | 
| 438 | 
         
            +
                  "epoch": 0.4,
         
     | 
| 439 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 440 | 
         
            +
                  "loss": 0.2947,
         
     | 
| 441 | 
         
            +
                  "step": 630
         
     | 
| 442 | 
         
            +
                },
         
     | 
| 443 | 
         
            +
                {
         
     | 
| 444 | 
         
            +
                  "epoch": 0.41,
         
     | 
| 445 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 446 | 
         
            +
                  "loss": 0.2953,
         
     | 
| 447 | 
         
            +
                  "step": 640
         
     | 
| 448 | 
         
            +
                },
         
     | 
| 449 | 
         
            +
                {
         
     | 
| 450 | 
         
            +
                  "epoch": 0.41,
         
     | 
| 451 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 452 | 
         
            +
                  "loss": 0.3028,
         
     | 
| 453 | 
         
            +
                  "step": 650
         
     | 
| 454 | 
         
            +
                },
         
     | 
| 455 | 
         
            +
                {
         
     | 
| 456 | 
         
            +
                  "epoch": 0.42,
         
     | 
| 457 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 458 | 
         
            +
                  "loss": 0.2979,
         
     | 
| 459 | 
         
            +
                  "step": 660
         
     | 
| 460 | 
         
            +
                },
         
     | 
| 461 | 
         
            +
                {
         
     | 
| 462 | 
         
            +
                  "epoch": 0.43,
         
     | 
| 463 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 464 | 
         
            +
                  "loss": 0.3039,
         
     | 
| 465 | 
         
            +
                  "step": 670
         
     | 
| 466 | 
         
            +
                },
         
     | 
| 467 | 
         
            +
                {
         
     | 
| 468 | 
         
            +
                  "epoch": 0.43,
         
     | 
| 469 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 470 | 
         
            +
                  "loss": 0.2969,
         
     | 
| 471 | 
         
            +
                  "step": 680
         
     | 
| 472 | 
         
            +
                },
         
     | 
| 473 | 
         
            +
                {
         
     | 
| 474 | 
         
            +
                  "epoch": 0.44,
         
     | 
| 475 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 476 | 
         
            +
                  "loss": 0.2994,
         
     | 
| 477 | 
         
            +
                  "step": 690
         
     | 
| 478 | 
         
            +
                },
         
     | 
| 479 | 
         
            +
                {
         
     | 
| 480 | 
         
            +
                  "epoch": 0.45,
         
     | 
| 481 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 482 | 
         
            +
                  "loss": 0.2961,
         
     | 
| 483 | 
         
            +
                  "step": 700
         
     | 
| 484 | 
         
            +
                },
         
     | 
| 485 | 
         
            +
                {
         
     | 
| 486 | 
         
            +
                  "epoch": 0.45,
         
     | 
| 487 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 488 | 
         
            +
                  "loss": 0.3031,
         
     | 
| 489 | 
         
            +
                  "step": 710
         
     | 
| 490 | 
         
            +
                },
         
     | 
| 491 | 
         
            +
                {
         
     | 
| 492 | 
         
            +
                  "epoch": 0.46,
         
     | 
| 493 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 494 | 
         
            +
                  "loss": 0.3037,
         
     | 
| 495 | 
         
            +
                  "step": 720
         
     | 
| 496 | 
         
            +
                },
         
     | 
| 497 | 
         
            +
                {
         
     | 
| 498 | 
         
            +
                  "epoch": 0.47,
         
     | 
| 499 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 500 | 
         
            +
                  "loss": 0.3008,
         
     | 
| 501 | 
         
            +
                  "step": 730
         
     | 
| 502 | 
         
            +
                },
         
     | 
| 503 | 
         
            +
                {
         
     | 
| 504 | 
         
            +
                  "epoch": 0.47,
         
     | 
| 505 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 506 | 
         
            +
                  "loss": 0.3089,
         
     | 
| 507 | 
         
            +
                  "step": 740
         
     | 
| 508 | 
         
            +
                },
         
     | 
| 509 | 
         
            +
                {
         
     | 
| 510 | 
         
            +
                  "epoch": 0.48,
         
     | 
| 511 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 512 | 
         
            +
                  "loss": 0.3061,
         
     | 
| 513 | 
         
            +
                  "step": 750
         
     | 
| 514 | 
         
            +
                },
         
     | 
| 515 | 
         
            +
                {
         
     | 
| 516 | 
         
            +
                  "epoch": 0.49,
         
     | 
| 517 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 518 | 
         
            +
                  "loss": 0.2987,
         
     | 
| 519 | 
         
            +
                  "step": 760
         
     | 
| 520 | 
         
            +
                },
         
     | 
| 521 | 
         
            +
                {
         
     | 
| 522 | 
         
            +
                  "epoch": 0.49,
         
     | 
| 523 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 524 | 
         
            +
                  "loss": 0.3041,
         
     | 
| 525 | 
         
            +
                  "step": 770
         
     | 
| 526 | 
         
            +
                },
         
     | 
| 527 | 
         
            +
                {
         
     | 
| 528 | 
         
            +
                  "epoch": 0.5,
         
     | 
| 529 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 530 | 
         
            +
                  "loss": 0.2993,
         
     | 
| 531 | 
         
            +
                  "step": 780
         
     | 
| 532 | 
         
            +
                },
         
     | 
| 533 | 
         
            +
                {
         
     | 
| 534 | 
         
            +
                  "epoch": 0.5,
         
     | 
| 535 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 536 | 
         
            +
                  "loss": 0.2936,
         
     | 
| 537 | 
         
            +
                  "step": 790
         
     | 
| 538 | 
         
            +
                },
         
     | 
| 539 | 
         
            +
                {
         
     | 
| 540 | 
         
            +
                  "epoch": 0.51,
         
     | 
| 541 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 542 | 
         
            +
                  "loss": 0.301,
         
     | 
| 543 | 
         
            +
                  "step": 800
         
     | 
| 544 | 
         
            +
                },
         
     | 
| 545 | 
         
            +
                {
         
     | 
| 546 | 
         
            +
                  "epoch": 0.51,
         
     | 
| 547 | 
         
            +
                  "eval_val_accuracy": 904.3333333333333,
         
     | 
| 548 | 
         
            +
                  "eval_val_loss": 0.30156368017196655,
         
     | 
| 549 | 
         
            +
                  "eval_val_runtime": 2246.2231,
         
     | 
| 550 | 
         
            +
                  "eval_val_samples_per_second": 4.452,
         
     | 
| 551 | 
         
            +
                  "eval_val_steps_per_second": 0.556,
         
     | 
| 552 | 
         
            +
                  "step": 800
         
     | 
| 553 | 
         
            +
                },
         
     | 
| 554 | 
         
            +
                {
         
     | 
| 555 | 
         
            +
                  "epoch": 0.51,
         
     | 
| 556 | 
         
            +
                  "eval_test_accuracy": 907.6904761904761,
         
     | 
| 557 | 
         
            +
                  "eval_test_loss": 0.3001132309436798,
         
     | 
| 558 | 
         
            +
                  "eval_test_runtime": 2247.6939,
         
     | 
| 559 | 
         
            +
                  "eval_test_samples_per_second": 4.449,
         
     | 
| 560 | 
         
            +
                  "eval_test_steps_per_second": 0.556,
         
     | 
| 561 | 
         
            +
                  "step": 800
         
     | 
| 562 | 
         
            +
                },
         
     | 
| 563 | 
         
            +
                {
         
     | 
| 564 | 
         
            +
                  "epoch": 0.52,
         
     | 
| 565 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 566 | 
         
            +
                  "loss": 0.299,
         
     | 
| 567 | 
         
            +
                  "step": 810
         
     | 
| 568 | 
         
            +
                },
         
     | 
| 569 | 
         
            +
                {
         
     | 
| 570 | 
         
            +
                  "epoch": 0.52,
         
     | 
| 571 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 572 | 
         
            +
                  "loss": 0.304,
         
     | 
| 573 | 
         
            +
                  "step": 820
         
     | 
| 574 | 
         
            +
                },
         
     | 
| 575 | 
         
            +
                {
         
     | 
| 576 | 
         
            +
                  "epoch": 0.53,
         
     | 
| 577 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 578 | 
         
            +
                  "loss": 0.3013,
         
     | 
| 579 | 
         
            +
                  "step": 830
         
     | 
| 580 | 
         
            +
                },
         
     | 
| 581 | 
         
            +
                {
         
     | 
| 582 | 
         
            +
                  "epoch": 0.54,
         
     | 
| 583 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 584 | 
         
            +
                  "loss": 0.2989,
         
     | 
| 585 | 
         
            +
                  "step": 840
         
     | 
| 586 | 
         
            +
                },
         
     | 
| 587 | 
         
            +
                {
         
     | 
| 588 | 
         
            +
                  "epoch": 0.54,
         
     | 
| 589 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 590 | 
         
            +
                  "loss": 0.3027,
         
     | 
| 591 | 
         
            +
                  "step": 850
         
     | 
| 592 | 
         
            +
                },
         
     | 
| 593 | 
         
            +
                {
         
     | 
| 594 | 
         
            +
                  "epoch": 0.55,
         
     | 
| 595 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 596 | 
         
            +
                  "loss": 0.3019,
         
     | 
| 597 | 
         
            +
                  "step": 860
         
     | 
| 598 | 
         
            +
                },
         
     | 
| 599 | 
         
            +
                {
         
     | 
| 600 | 
         
            +
                  "epoch": 0.56,
         
     | 
| 601 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 602 | 
         
            +
                  "loss": 0.3033,
         
     | 
| 603 | 
         
            +
                  "step": 870
         
     | 
| 604 | 
         
            +
                },
         
     | 
| 605 | 
         
            +
                {
         
     | 
| 606 | 
         
            +
                  "epoch": 0.56,
         
     | 
| 607 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 608 | 
         
            +
                  "loss": 0.2984,
         
     | 
| 609 | 
         
            +
                  "step": 880
         
     | 
| 610 | 
         
            +
                },
         
     | 
| 611 | 
         
            +
                {
         
     | 
| 612 | 
         
            +
                  "epoch": 0.57,
         
     | 
| 613 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 614 | 
         
            +
                  "loss": 0.2967,
         
     | 
| 615 | 
         
            +
                  "step": 890
         
     | 
| 616 | 
         
            +
                },
         
     | 
| 617 | 
         
            +
                {
         
     | 
| 618 | 
         
            +
                  "epoch": 0.57,
         
     | 
| 619 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 620 | 
         
            +
                  "loss": 0.3,
         
     | 
| 621 | 
         
            +
                  "step": 900
         
     | 
| 622 | 
         
            +
                },
         
     | 
| 623 | 
         
            +
                {
         
     | 
| 624 | 
         
            +
                  "epoch": 0.58,
         
     | 
| 625 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 626 | 
         
            +
                  "loss": 0.3025,
         
     | 
| 627 | 
         
            +
                  "step": 910
         
     | 
| 628 | 
         
            +
                },
         
     | 
| 629 | 
         
            +
                {
         
     | 
| 630 | 
         
            +
                  "epoch": 0.59,
         
     | 
| 631 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 632 | 
         
            +
                  "loss": 0.3037,
         
     | 
| 633 | 
         
            +
                  "step": 920
         
     | 
| 634 | 
         
            +
                },
         
     | 
| 635 | 
         
            +
                {
         
     | 
| 636 | 
         
            +
                  "epoch": 0.59,
         
     | 
| 637 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 638 | 
         
            +
                  "loss": 0.297,
         
     | 
| 639 | 
         
            +
                  "step": 930
         
     | 
| 640 | 
         
            +
                },
         
     | 
| 641 | 
         
            +
                {
         
     | 
| 642 | 
         
            +
                  "epoch": 0.6,
         
     | 
| 643 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 644 | 
         
            +
                  "loss": 0.3019,
         
     | 
| 645 | 
         
            +
                  "step": 940
         
     | 
| 646 | 
         
            +
                },
         
     | 
| 647 | 
         
            +
                {
         
     | 
| 648 | 
         
            +
                  "epoch": 0.61,
         
     | 
| 649 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 650 | 
         
            +
                  "loss": 0.2966,
         
     | 
| 651 | 
         
            +
                  "step": 950
         
     | 
| 652 | 
         
            +
                },
         
     | 
| 653 | 
         
            +
                {
         
     | 
| 654 | 
         
            +
                  "epoch": 0.61,
         
     | 
| 655 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 656 | 
         
            +
                  "loss": 0.3023,
         
     | 
| 657 | 
         
            +
                  "step": 960
         
     | 
| 658 | 
         
            +
                },
         
     | 
| 659 | 
         
            +
                {
         
     | 
| 660 | 
         
            +
                  "epoch": 0.62,
         
     | 
| 661 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 662 | 
         
            +
                  "loss": 0.2961,
         
     | 
| 663 | 
         
            +
                  "step": 970
         
     | 
| 664 | 
         
            +
                },
         
     | 
| 665 | 
         
            +
                {
         
     | 
| 666 | 
         
            +
                  "epoch": 0.63,
         
     | 
| 667 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 668 | 
         
            +
                  "loss": 0.2987,
         
     | 
| 669 | 
         
            +
                  "step": 980
         
     | 
| 670 | 
         
            +
                },
         
     | 
| 671 | 
         
            +
                {
         
     | 
| 672 | 
         
            +
                  "epoch": 0.63,
         
     | 
| 673 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 674 | 
         
            +
                  "loss": 0.2995,
         
     | 
| 675 | 
         
            +
                  "step": 990
         
     | 
| 676 | 
         
            +
                },
         
     | 
| 677 | 
         
            +
                {
         
     | 
| 678 | 
         
            +
                  "epoch": 0.64,
         
     | 
| 679 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 680 | 
         
            +
                  "loss": 0.2976,
         
     | 
| 681 | 
         
            +
                  "step": 1000
         
     | 
| 682 | 
         
            +
                },
         
     | 
| 683 | 
         
            +
                {
         
     | 
| 684 | 
         
            +
                  "epoch": 0.64,
         
     | 
| 685 | 
         
            +
                  "eval_val_accuracy": 906.5952380952382,
         
     | 
| 686 | 
         
            +
                  "eval_val_loss": 0.3006158769130707,
         
     | 
| 687 | 
         
            +
                  "eval_val_runtime": 2245.8387,
         
     | 
| 688 | 
         
            +
                  "eval_val_samples_per_second": 4.453,
         
     | 
| 689 | 
         
            +
                  "eval_val_steps_per_second": 0.557,
         
     | 
| 690 | 
         
            +
                  "step": 1000
         
     | 
| 691 | 
         
            +
                },
         
     | 
| 692 | 
         
            +
                {
         
     | 
| 693 | 
         
            +
                  "epoch": 0.64,
         
     | 
| 694 | 
         
            +
                  "eval_test_accuracy": 907.5952380952382,
         
     | 
| 695 | 
         
            +
                  "eval_test_loss": 0.29969537258148193,
         
     | 
| 696 | 
         
            +
                  "eval_test_runtime": 2246.9928,
         
     | 
| 697 | 
         
            +
                  "eval_test_samples_per_second": 4.45,
         
     | 
| 698 | 
         
            +
                  "eval_test_steps_per_second": 0.556,
         
     | 
| 699 | 
         
            +
                  "step": 1000
         
     | 
| 700 | 
         
            +
                },
         
     | 
| 701 | 
         
            +
                {
         
     | 
| 702 | 
         
            +
                  "epoch": 0.64,
         
     | 
| 703 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 704 | 
         
            +
                  "loss": 0.2988,
         
     | 
| 705 | 
         
            +
                  "step": 1010
         
     | 
| 706 | 
         
            +
                },
         
     | 
| 707 | 
         
            +
                {
         
     | 
| 708 | 
         
            +
                  "epoch": 0.65,
         
     | 
| 709 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 710 | 
         
            +
                  "loss": 0.2999,
         
     | 
| 711 | 
         
            +
                  "step": 1020
         
     | 
| 712 | 
         
            +
                },
         
     | 
| 713 | 
         
            +
                {
         
     | 
| 714 | 
         
            +
                  "epoch": 0.66,
         
     | 
| 715 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 716 | 
         
            +
                  "loss": 0.2995,
         
     | 
| 717 | 
         
            +
                  "step": 1030
         
     | 
| 718 | 
         
            +
                },
         
     | 
| 719 | 
         
            +
                {
         
     | 
| 720 | 
         
            +
                  "epoch": 0.66,
         
     | 
| 721 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 722 | 
         
            +
                  "loss": 0.2991,
         
     | 
| 723 | 
         
            +
                  "step": 1040
         
     | 
| 724 | 
         
            +
                },
         
     | 
| 725 | 
         
            +
                {
         
     | 
| 726 | 
         
            +
                  "epoch": 0.67,
         
     | 
| 727 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 728 | 
         
            +
                  "loss": 0.2922,
         
     | 
| 729 | 
         
            +
                  "step": 1050
         
     | 
| 730 | 
         
            +
                },
         
     | 
| 731 | 
         
            +
                {
         
     | 
| 732 | 
         
            +
                  "epoch": 0.68,
         
     | 
| 733 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 734 | 
         
            +
                  "loss": 0.2957,
         
     | 
| 735 | 
         
            +
                  "step": 1060
         
     | 
| 736 | 
         
            +
                },
         
     | 
| 737 | 
         
            +
                {
         
     | 
| 738 | 
         
            +
                  "epoch": 0.68,
         
     | 
| 739 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 740 | 
         
            +
                  "loss": 0.305,
         
     | 
| 741 | 
         
            +
                  "step": 1070
         
     | 
| 742 | 
         
            +
                },
         
     | 
| 743 | 
         
            +
                {
         
     | 
| 744 | 
         
            +
                  "epoch": 0.69,
         
     | 
| 745 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 746 | 
         
            +
                  "loss": 0.2996,
         
     | 
| 747 | 
         
            +
                  "step": 1080
         
     | 
| 748 | 
         
            +
                },
         
     | 
| 749 | 
         
            +
                {
         
     | 
| 750 | 
         
            +
                  "epoch": 0.7,
         
     | 
| 751 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 752 | 
         
            +
                  "loss": 0.3032,
         
     | 
| 753 | 
         
            +
                  "step": 1090
         
     | 
| 754 | 
         
            +
                },
         
     | 
| 755 | 
         
            +
                {
         
     | 
| 756 | 
         
            +
                  "epoch": 0.7,
         
     | 
| 757 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 758 | 
         
            +
                  "loss": 0.3,
         
     | 
| 759 | 
         
            +
                  "step": 1100
         
     | 
| 760 | 
         
            +
                },
         
     | 
| 761 | 
         
            +
                {
         
     | 
| 762 | 
         
            +
                  "epoch": 0.71,
         
     | 
| 763 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 764 | 
         
            +
                  "loss": 0.2937,
         
     | 
| 765 | 
         
            +
                  "step": 1110
         
     | 
| 766 | 
         
            +
                },
         
     | 
| 767 | 
         
            +
                {
         
     | 
| 768 | 
         
            +
                  "epoch": 0.71,
         
     | 
| 769 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 770 | 
         
            +
                  "loss": 0.2976,
         
     | 
| 771 | 
         
            +
                  "step": 1120
         
     | 
| 772 | 
         
            +
                },
         
     | 
| 773 | 
         
            +
                {
         
     | 
| 774 | 
         
            +
                  "epoch": 0.72,
         
     | 
| 775 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 776 | 
         
            +
                  "loss": 0.2993,
         
     | 
| 777 | 
         
            +
                  "step": 1130
         
     | 
| 778 | 
         
            +
                },
         
     | 
| 779 | 
         
            +
                {
         
     | 
| 780 | 
         
            +
                  "epoch": 0.73,
         
     | 
| 781 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 782 | 
         
            +
                  "loss": 0.2994,
         
     | 
| 783 | 
         
            +
                  "step": 1140
         
     | 
| 784 | 
         
            +
                },
         
     | 
| 785 | 
         
            +
                {
         
     | 
| 786 | 
         
            +
                  "epoch": 0.73,
         
     | 
| 787 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 788 | 
         
            +
                  "loss": 0.3033,
         
     | 
| 789 | 
         
            +
                  "step": 1150
         
     | 
| 790 | 
         
            +
                },
         
     | 
| 791 | 
         
            +
                {
         
     | 
| 792 | 
         
            +
                  "epoch": 0.74,
         
     | 
| 793 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 794 | 
         
            +
                  "loss": 0.3029,
         
     | 
| 795 | 
         
            +
                  "step": 1160
         
     | 
| 796 | 
         
            +
                },
         
     | 
| 797 | 
         
            +
                {
         
     | 
| 798 | 
         
            +
                  "epoch": 0.75,
         
     | 
| 799 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 800 | 
         
            +
                  "loss": 0.3014,
         
     | 
| 801 | 
         
            +
                  "step": 1170
         
     | 
| 802 | 
         
            +
                },
         
     | 
| 803 | 
         
            +
                {
         
     | 
| 804 | 
         
            +
                  "epoch": 0.75,
         
     | 
| 805 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 806 | 
         
            +
                  "loss": 0.2976,
         
     | 
| 807 | 
         
            +
                  "step": 1180
         
     | 
| 808 | 
         
            +
                },
         
     | 
| 809 | 
         
            +
                {
         
     | 
| 810 | 
         
            +
                  "epoch": 0.76,
         
     | 
| 811 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 812 | 
         
            +
                  "loss": 0.2978,
         
     | 
| 813 | 
         
            +
                  "step": 1190
         
     | 
| 814 | 
         
            +
                },
         
     | 
| 815 | 
         
            +
                {
         
     | 
| 816 | 
         
            +
                  "epoch": 0.77,
         
     | 
| 817 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 818 | 
         
            +
                  "loss": 0.2977,
         
     | 
| 819 | 
         
            +
                  "step": 1200
         
     | 
| 820 | 
         
            +
                },
         
     | 
| 821 | 
         
            +
                {
         
     | 
| 822 | 
         
            +
                  "epoch": 0.77,
         
     | 
| 823 | 
         
            +
                  "eval_val_accuracy": 905.9285714285714,
         
     | 
| 824 | 
         
            +
                  "eval_val_loss": 0.30016693472862244,
         
     | 
| 825 | 
         
            +
                  "eval_val_runtime": 2246.3367,
         
     | 
| 826 | 
         
            +
                  "eval_val_samples_per_second": 4.452,
         
     | 
| 827 | 
         
            +
                  "eval_val_steps_per_second": 0.556,
         
     | 
| 828 | 
         
            +
                  "step": 1200
         
     | 
| 829 | 
         
            +
                },
         
     | 
| 830 | 
         
            +
                {
         
     | 
| 831 | 
         
            +
                  "epoch": 0.77,
         
     | 
| 832 | 
         
            +
                  "eval_test_accuracy": 907.4761904761905,
         
     | 
| 833 | 
         
            +
                  "eval_test_loss": 0.29916131496429443,
         
     | 
| 834 | 
         
            +
                  "eval_test_runtime": 2247.4238,
         
     | 
| 835 | 
         
            +
                  "eval_test_samples_per_second": 4.45,
         
     | 
| 836 | 
         
            +
                  "eval_test_steps_per_second": 0.556,
         
     | 
| 837 | 
         
            +
                  "step": 1200
         
     | 
| 838 | 
         
            +
                },
         
     | 
| 839 | 
         
            +
                {
         
     | 
| 840 | 
         
            +
                  "epoch": 0.77,
         
     | 
| 841 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 842 | 
         
            +
                  "loss": 0.3029,
         
     | 
| 843 | 
         
            +
                  "step": 1210
         
     | 
| 844 | 
         
            +
                },
         
     | 
| 845 | 
         
            +
                {
         
     | 
| 846 | 
         
            +
                  "epoch": 0.78,
         
     | 
| 847 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 848 | 
         
            +
                  "loss": 0.2976,
         
     | 
| 849 | 
         
            +
                  "step": 1220
         
     | 
| 850 | 
         
            +
                },
         
     | 
| 851 | 
         
            +
                {
         
     | 
| 852 | 
         
            +
                  "epoch": 0.78,
         
     | 
| 853 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 854 | 
         
            +
                  "loss": 0.2965,
         
     | 
| 855 | 
         
            +
                  "step": 1230
         
     | 
| 856 | 
         
            +
                },
         
     | 
| 857 | 
         
            +
                {
         
     | 
| 858 | 
         
            +
                  "epoch": 0.79,
         
     | 
| 859 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 860 | 
         
            +
                  "loss": 0.2966,
         
     | 
| 861 | 
         
            +
                  "step": 1240
         
     | 
| 862 | 
         
            +
                },
         
     | 
| 863 | 
         
            +
                {
         
     | 
| 864 | 
         
            +
                  "epoch": 0.8,
         
     | 
| 865 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 866 | 
         
            +
                  "loss": 0.2993,
         
     | 
| 867 | 
         
            +
                  "step": 1250
         
     | 
| 868 | 
         
            +
                },
         
     | 
| 869 | 
         
            +
                {
         
     | 
| 870 | 
         
            +
                  "epoch": 0.8,
         
     | 
| 871 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 872 | 
         
            +
                  "loss": 0.2961,
         
     | 
| 873 | 
         
            +
                  "step": 1260
         
     | 
| 874 | 
         
            +
                },
         
     | 
| 875 | 
         
            +
                {
         
     | 
| 876 | 
         
            +
                  "epoch": 0.81,
         
     | 
| 877 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 878 | 
         
            +
                  "loss": 0.2959,
         
     | 
| 879 | 
         
            +
                  "step": 1270
         
     | 
| 880 | 
         
            +
                },
         
     | 
| 881 | 
         
            +
                {
         
     | 
| 882 | 
         
            +
                  "epoch": 0.82,
         
     | 
| 883 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 884 | 
         
            +
                  "loss": 0.2998,
         
     | 
| 885 | 
         
            +
                  "step": 1280
         
     | 
| 886 | 
         
            +
                },
         
     | 
| 887 | 
         
            +
                {
         
     | 
| 888 | 
         
            +
                  "epoch": 0.82,
         
     | 
| 889 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 890 | 
         
            +
                  "loss": 0.3024,
         
     | 
| 891 | 
         
            +
                  "step": 1290
         
     | 
| 892 | 
         
            +
                },
         
     | 
| 893 | 
         
            +
                {
         
     | 
| 894 | 
         
            +
                  "epoch": 0.83,
         
     | 
| 895 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 896 | 
         
            +
                  "loss": 0.2934,
         
     | 
| 897 | 
         
            +
                  "step": 1300
         
     | 
| 898 | 
         
            +
                },
         
     | 
| 899 | 
         
            +
                {
         
     | 
| 900 | 
         
            +
                  "epoch": 0.84,
         
     | 
| 901 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 902 | 
         
            +
                  "loss": 0.2966,
         
     | 
| 903 | 
         
            +
                  "step": 1310
         
     | 
| 904 | 
         
            +
                },
         
     | 
| 905 | 
         
            +
                {
         
     | 
| 906 | 
         
            +
                  "epoch": 0.84,
         
     | 
| 907 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 908 | 
         
            +
                  "loss": 0.3051,
         
     | 
| 909 | 
         
            +
                  "step": 1320
         
     | 
| 910 | 
         
            +
                },
         
     | 
| 911 | 
         
            +
                {
         
     | 
| 912 | 
         
            +
                  "epoch": 0.85,
         
     | 
| 913 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 914 | 
         
            +
                  "loss": 0.2988,
         
     | 
| 915 | 
         
            +
                  "step": 1330
         
     | 
| 916 | 
         
            +
                },
         
     | 
| 917 | 
         
            +
                {
         
     | 
| 918 | 
         
            +
                  "epoch": 0.86,
         
     | 
| 919 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 920 | 
         
            +
                  "loss": 0.3001,
         
     | 
| 921 | 
         
            +
                  "step": 1340
         
     | 
| 922 | 
         
            +
                },
         
     | 
| 923 | 
         
            +
                {
         
     | 
| 924 | 
         
            +
                  "epoch": 0.86,
         
     | 
| 925 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 926 | 
         
            +
                  "loss": 0.3032,
         
     | 
| 927 | 
         
            +
                  "step": 1350
         
     | 
| 928 | 
         
            +
                },
         
     | 
| 929 | 
         
            +
                {
         
     | 
| 930 | 
         
            +
                  "epoch": 0.87,
         
     | 
| 931 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 932 | 
         
            +
                  "loss": 0.2972,
         
     | 
| 933 | 
         
            +
                  "step": 1360
         
     | 
| 934 | 
         
            +
                },
         
     | 
| 935 | 
         
            +
                {
         
     | 
| 936 | 
         
            +
                  "epoch": 0.87,
         
     | 
| 937 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 938 | 
         
            +
                  "loss": 0.2996,
         
     | 
| 939 | 
         
            +
                  "step": 1370
         
     | 
| 940 | 
         
            +
                },
         
     | 
| 941 | 
         
            +
                {
         
     | 
| 942 | 
         
            +
                  "epoch": 0.88,
         
     | 
| 943 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 944 | 
         
            +
                  "loss": 0.298,
         
     | 
| 945 | 
         
            +
                  "step": 1380
         
     | 
| 946 | 
         
            +
                },
         
     | 
| 947 | 
         
            +
                {
         
     | 
| 948 | 
         
            +
                  "epoch": 0.89,
         
     | 
| 949 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 950 | 
         
            +
                  "loss": 0.2959,
         
     | 
| 951 | 
         
            +
                  "step": 1390
         
     | 
| 952 | 
         
            +
                },
         
     | 
| 953 | 
         
            +
                {
         
     | 
| 954 | 
         
            +
                  "epoch": 0.89,
         
     | 
| 955 | 
         
            +
                  "learning_rate": 1e-05,
         
     | 
| 956 | 
         
            +
                  "loss": 0.2951,
         
     | 
| 957 | 
         
            +
                  "step": 1400
         
     | 
| 958 | 
         
            +
                },
         
     | 
| 959 | 
         
            +
                {
         
     | 
| 960 | 
         
            +
                  "epoch": 0.89,
         
     | 
| 961 | 
         
            +
                  "eval_val_accuracy": 909.1904761904761,
         
     | 
| 962 | 
         
            +
                  "eval_val_loss": 0.2997502386569977,
         
     | 
| 963 | 
         
            +
                  "eval_val_runtime": 2245.4318,
         
     | 
| 964 | 
         
            +
                  "eval_val_samples_per_second": 4.453,
         
     | 
| 965 | 
         
            +
                  "eval_val_steps_per_second": 0.557,
         
     | 
| 966 | 
         
            +
                  "step": 1400
         
     | 
| 967 | 
         
            +
                },
         
     | 
| 968 | 
         
            +
                {
         
     | 
| 969 | 
         
            +
                  "epoch": 0.89,
         
     | 
| 970 | 
         
            +
                  "eval_test_accuracy": 907.5238095238095,
         
     | 
| 971 | 
         
            +
                  "eval_test_loss": 0.2989273965358734,
         
     | 
| 972 | 
         
            +
                  "eval_test_runtime": 2246.796,
         
     | 
| 973 | 
         
            +
                  "eval_test_samples_per_second": 4.451,
         
     | 
| 974 | 
         
            +
                  "eval_test_steps_per_second": 0.556,
         
     | 
| 975 | 
         
            +
                  "step": 1400
         
     | 
| 976 | 
         
            +
                }
         
     | 
| 977 | 
         
            +
              ],
         
     | 
| 978 | 
         
            +
              "logging_steps": 10,
         
     | 
| 979 | 
         
            +
              "max_steps": 7835,
         
     | 
| 980 | 
         
            +
              "num_train_epochs": 5,
         
     | 
| 981 | 
         
            +
              "save_steps": 200,
         
     | 
| 982 | 
         
            +
              "total_flos": 0.0,
         
     | 
| 983 | 
         
            +
              "trial_name": null,
         
     | 
| 984 | 
         
            +
              "trial_params": null
         
     | 
| 985 | 
         
            +
            }
         
     | 
    	
        training_args.bin
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:b0970cf0f8a8b2c721397d2b59e62220a6e0b2228225ba1537abeaf5fd367de8
         
     | 
| 3 | 
         
            +
            size 5307
         
     | 
    	
        zero_to_fp32.py
    ADDED
    
    | 
         @@ -0,0 +1,587 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/usr/bin/env python
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            # Copyright (c) Microsoft Corporation.
         
     | 
| 4 | 
         
            +
            # SPDX-License-Identifier: Apache-2.0
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # DeepSpeed Team
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
         
     | 
| 9 | 
         
            +
            # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
         
     | 
| 10 | 
         
            +
            # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
         
     | 
| 11 | 
         
            +
            # application.
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            # example: python zero_to_fp32.py . pytorch_model.bin
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import argparse
         
     | 
| 16 | 
         
            +
            import torch
         
     | 
| 17 | 
         
            +
            import glob
         
     | 
| 18 | 
         
            +
            import math
         
     | 
| 19 | 
         
            +
            import os
         
     | 
| 20 | 
         
            +
            import re
         
     | 
| 21 | 
         
            +
            from collections import OrderedDict
         
     | 
| 22 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
         
     | 
| 25 | 
         
            +
            # DeepSpeed data structures it has to be available in the current python environment.
         
     | 
| 26 | 
         
            +
            from deepspeed.utils import logger
         
     | 
| 27 | 
         
            +
            from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
         
     | 
| 28 | 
         
            +
                                                        FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
         
     | 
| 29 | 
         
            +
                                                        FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            @dataclass
         
     | 
| 33 | 
         
            +
            class zero_model_state:
         
     | 
| 34 | 
         
            +
                buffers: dict()
         
     | 
| 35 | 
         
            +
                param_shapes: dict()
         
     | 
| 36 | 
         
            +
                shared_params: list
         
     | 
| 37 | 
         
            +
                ds_version: int
         
     | 
| 38 | 
         
            +
                frozen_param_shapes: dict()
         
     | 
| 39 | 
         
            +
                frozen_param_fragments: dict()
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            debug = 0
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            # load to cpu
         
     | 
| 45 | 
         
            +
            device = torch.device('cpu')
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            def atoi(text):
         
     | 
| 49 | 
         
            +
                return int(text) if text.isdigit() else text
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            def natural_keys(text):
         
     | 
| 53 | 
         
            +
                '''
         
     | 
| 54 | 
         
            +
                alist.sort(key=natural_keys) sorts in human order
         
     | 
| 55 | 
         
            +
                http://nedbatchelder.com/blog/200712/human_sorting.html
         
     | 
| 56 | 
         
            +
                (See Toothy's implementation in the comments)
         
     | 
| 57 | 
         
            +
                '''
         
     | 
| 58 | 
         
            +
                return [atoi(c) for c in re.split(r'(\d+)', text)]
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def get_model_state_file(checkpoint_dir, zero_stage):
         
     | 
| 62 | 
         
            +
                if not os.path.isdir(checkpoint_dir):
         
     | 
| 63 | 
         
            +
                    raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                # there should be only one file
         
     | 
| 66 | 
         
            +
                if zero_stage <= 2:
         
     | 
| 67 | 
         
            +
                    file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
         
     | 
| 68 | 
         
            +
                elif zero_stage == 3:
         
     | 
| 69 | 
         
            +
                    file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                if not os.path.exists(file):
         
     | 
| 72 | 
         
            +
                    raise FileNotFoundError(f"can't find model states file at '{file}'")
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                return file
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            def get_checkpoint_files(checkpoint_dir, glob_pattern):
         
     | 
| 78 | 
         
            +
                # XXX: need to test that this simple glob rule works for multi-node setup too
         
     | 
| 79 | 
         
            +
                ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                if len(ckpt_files) == 0:
         
     | 
| 82 | 
         
            +
                    raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                return ckpt_files
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def get_optim_files(checkpoint_dir):
         
     | 
| 88 | 
         
            +
                return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            def get_model_state_files(checkpoint_dir):
         
     | 
| 92 | 
         
            +
                return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            def parse_model_states(files):
         
     | 
| 96 | 
         
            +
                zero_model_states = []
         
     | 
| 97 | 
         
            +
                for file in files:
         
     | 
| 98 | 
         
            +
                    state_dict = torch.load(file, map_location=device)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    if BUFFER_NAMES not in state_dict:
         
     | 
| 101 | 
         
            +
                        raise ValueError(f"{file} is not a model state checkpoint")
         
     | 
| 102 | 
         
            +
                    buffer_names = state_dict[BUFFER_NAMES]
         
     | 
| 103 | 
         
            +
                    if debug:
         
     | 
| 104 | 
         
            +
                        print("Found buffers:", buffer_names)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    # recover just the buffers while restoring them to fp32 if they were saved in fp16
         
     | 
| 107 | 
         
            +
                    buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
         
     | 
| 108 | 
         
            +
                    param_shapes = state_dict[PARAM_SHAPES]
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    # collect parameters that are included in param_shapes
         
     | 
| 111 | 
         
            +
                    param_names = []
         
     | 
| 112 | 
         
            +
                    for s in param_shapes:
         
     | 
| 113 | 
         
            +
                        for name in s.keys():
         
     | 
| 114 | 
         
            +
                            param_names.append(name)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    # update with frozen parameters
         
     | 
| 117 | 
         
            +
                    frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
         
     | 
| 118 | 
         
            +
                    if frozen_param_shapes is not None:
         
     | 
| 119 | 
         
            +
                        if debug:
         
     | 
| 120 | 
         
            +
                            print(f"Found frozen_param_shapes: {frozen_param_shapes}")
         
     | 
| 121 | 
         
            +
                        param_names += list(frozen_param_shapes.keys())
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    # handle shared params
         
     | 
| 124 | 
         
            +
                    shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    ds_version = state_dict.get(DS_VERSION, None)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    z_model_state = zero_model_state(buffers=buffers,
         
     | 
| 131 | 
         
            +
                                                     param_shapes=param_shapes,
         
     | 
| 132 | 
         
            +
                                                     shared_params=shared_params,
         
     | 
| 133 | 
         
            +
                                                     ds_version=ds_version,
         
     | 
| 134 | 
         
            +
                                                     frozen_param_shapes=frozen_param_shapes,
         
     | 
| 135 | 
         
            +
                                                     frozen_param_fragments=frozen_param_fragments)
         
     | 
| 136 | 
         
            +
                    zero_model_states.append(z_model_state)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                return zero_model_states
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            def parse_optim_states(files, ds_checkpoint_dir):
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                total_files = len(files)
         
     | 
| 144 | 
         
            +
                state_dicts = []
         
     | 
| 145 | 
         
            +
                for f in files:
         
     | 
| 146 | 
         
            +
                    state_dict = torch.load(f, map_location=device)
         
     | 
| 147 | 
         
            +
                    # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
         
     | 
| 148 | 
         
            +
                    # and also handle the case where it was already removed by another helper script
         
     | 
| 149 | 
         
            +
                    state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
         
     | 
| 150 | 
         
            +
                    state_dicts.append(state_dict)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
         
     | 
| 153 | 
         
            +
                    raise ValueError(f"{files[0]} is not a zero checkpoint")
         
     | 
| 154 | 
         
            +
                zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
         
     | 
| 155 | 
         
            +
                world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
         
     | 
| 158 | 
         
            +
                # parameters can be different from data parallelism for non-expert parameters. So we can just
         
     | 
| 159 | 
         
            +
                # use the max of the partition_count to get the dp world_size.
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                if type(world_size) is list:
         
     | 
| 162 | 
         
            +
                    world_size = max(world_size)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                if world_size != total_files:
         
     | 
| 165 | 
         
            +
                    raise ValueError(
         
     | 
| 166 | 
         
            +
                        f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
         
     | 
| 167 | 
         
            +
                        "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
         
     | 
| 168 | 
         
            +
                    )
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                # the groups are named differently in each stage
         
     | 
| 171 | 
         
            +
                if zero_stage <= 2:
         
     | 
| 172 | 
         
            +
                    fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
         
     | 
| 173 | 
         
            +
                elif zero_stage == 3:
         
     | 
| 174 | 
         
            +
                    fp32_groups_key = FP32_FLAT_GROUPS
         
     | 
| 175 | 
         
            +
                else:
         
     | 
| 176 | 
         
            +
                    raise ValueError(f"unknown zero stage {zero_stage}")
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                if zero_stage <= 2:
         
     | 
| 179 | 
         
            +
                    fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
         
     | 
| 180 | 
         
            +
                elif zero_stage == 3:
         
     | 
| 181 | 
         
            +
                    # if there is more than one param group, there will be multiple flattened tensors - one
         
     | 
| 182 | 
         
            +
                    # flattened tensor per group - for simplicity merge them into a single tensor
         
     | 
| 183 | 
         
            +
                    #
         
     | 
| 184 | 
         
            +
                    # XXX: could make the script more memory efficient for when there are multiple groups - it
         
     | 
| 185 | 
         
            +
                    # will require matching the sub-lists of param_shapes for each param group flattened tensor
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    fp32_flat_groups = [
         
     | 
| 188 | 
         
            +
                        torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
         
     | 
| 189 | 
         
            +
                    ]
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                return zero_stage, world_size, fp32_flat_groups
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
         
     | 
| 195 | 
         
            +
                """
         
     | 
| 196 | 
         
            +
                Returns fp32 state_dict reconstructed from ds checkpoint
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                Args:
         
     | 
| 199 | 
         
            +
                    - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                """
         
     | 
| 202 | 
         
            +
                print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                optim_files = get_optim_files(ds_checkpoint_dir)
         
     | 
| 205 | 
         
            +
                zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
         
     | 
| 206 | 
         
            +
                print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                model_files = get_model_state_files(ds_checkpoint_dir)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                zero_model_states = parse_model_states(model_files)
         
     | 
| 211 | 
         
            +
                print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                if zero_stage <= 2:
         
     | 
| 214 | 
         
            +
                    return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
         
     | 
| 215 | 
         
            +
                elif zero_stage == 3:
         
     | 
| 216 | 
         
            +
                    return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
            def _zero2_merge_frozen_params(state_dict, zero_model_states):
         
     | 
| 220 | 
         
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         
     | 
| 221 | 
         
            +
                    return
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         
     | 
| 224 | 
         
            +
                frozen_param_fragments = zero_model_states[0].frozen_param_fragments
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                if debug:
         
     | 
| 227 | 
         
            +
                    num_elem = sum(s.numel() for s in frozen_param_shapes.values())
         
     | 
| 228 | 
         
            +
                    print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    wanted_params = len(frozen_param_shapes)
         
     | 
| 231 | 
         
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         
     | 
| 232 | 
         
            +
                    avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
         
     | 
| 233 | 
         
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         
     | 
| 234 | 
         
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                total_params = 0
         
     | 
| 237 | 
         
            +
                total_numel = 0
         
     | 
| 238 | 
         
            +
                for name, shape in frozen_param_shapes.items():
         
     | 
| 239 | 
         
            +
                    total_params += 1
         
     | 
| 240 | 
         
            +
                    unpartitioned_numel = shape.numel()
         
     | 
| 241 | 
         
            +
                    total_numel += unpartitioned_numel
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    state_dict[name] = frozen_param_fragments[name]
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    if debug:
         
     | 
| 246 | 
         
            +
                        print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
            def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         
     | 
| 252 | 
         
            +
                param_shapes = zero_model_states[0].param_shapes
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                # Reconstruction protocol:
         
     | 
| 255 | 
         
            +
                #
         
     | 
| 256 | 
         
            +
                # XXX: document this
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                if debug:
         
     | 
| 259 | 
         
            +
                    for i in range(world_size):
         
     | 
| 260 | 
         
            +
                        for j in range(len(fp32_flat_groups[0])):
         
     | 
| 261 | 
         
            +
                            print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                # XXX: memory usage doubles here (zero2)
         
     | 
| 264 | 
         
            +
                num_param_groups = len(fp32_flat_groups[0])
         
     | 
| 265 | 
         
            +
                merged_single_partition_of_fp32_groups = []
         
     | 
| 266 | 
         
            +
                for i in range(num_param_groups):
         
     | 
| 267 | 
         
            +
                    merged_partitions = [sd[i] for sd in fp32_flat_groups]
         
     | 
| 268 | 
         
            +
                    full_single_fp32_vector = torch.cat(merged_partitions, 0)
         
     | 
| 269 | 
         
            +
                    merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
         
     | 
| 270 | 
         
            +
                avail_numel = sum(
         
     | 
| 271 | 
         
            +
                    [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                if debug:
         
     | 
| 274 | 
         
            +
                    wanted_params = sum([len(shapes) for shapes in param_shapes])
         
     | 
| 275 | 
         
            +
                    wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
         
     | 
| 276 | 
         
            +
                    # not asserting if there is a mismatch due to possible padding
         
     | 
| 277 | 
         
            +
                    print(f"Have {avail_numel} numels to process.")
         
     | 
| 278 | 
         
            +
                    print(f"Need {wanted_numel} numels in {wanted_params} params.")
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                # params
         
     | 
| 281 | 
         
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         
     | 
| 282 | 
         
            +
                # out-of-core computing solution
         
     | 
| 283 | 
         
            +
                total_numel = 0
         
     | 
| 284 | 
         
            +
                total_params = 0
         
     | 
| 285 | 
         
            +
                for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
         
     | 
| 286 | 
         
            +
                    offset = 0
         
     | 
| 287 | 
         
            +
                    avail_numel = full_single_fp32_vector.numel()
         
     | 
| 288 | 
         
            +
                    for name, shape in shapes.items():
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                        unpartitioned_numel = shape.numel()
         
     | 
| 291 | 
         
            +
                        total_numel += unpartitioned_numel
         
     | 
| 292 | 
         
            +
                        total_params += 1
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                        if debug:
         
     | 
| 295 | 
         
            +
                            print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         
     | 
| 296 | 
         
            +
                        state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
         
     | 
| 297 | 
         
            +
                        offset += unpartitioned_numel
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
         
     | 
| 300 | 
         
            +
                    # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
         
     | 
| 301 | 
         
            +
                    # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
         
     | 
| 302 | 
         
            +
                    # live optimizer object, so we are checking that the numbers are within the right range
         
     | 
| 303 | 
         
            +
                    align_to = 2 * world_size
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    def zero2_align(x):
         
     | 
| 306 | 
         
            +
                        return align_to * math.ceil(x / align_to)
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    if debug:
         
     | 
| 309 | 
         
            +
                        print(f"original offset={offset}, avail_numel={avail_numel}")
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                    offset = zero2_align(offset)
         
     | 
| 312 | 
         
            +
                    avail_numel = zero2_align(avail_numel)
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                    if debug:
         
     | 
| 315 | 
         
            +
                        print(f"aligned  offset={offset}, avail_numel={avail_numel}")
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    # Sanity check
         
     | 
| 318 | 
         
            +
                    if offset != avail_numel:
         
     | 
| 319 | 
         
            +
                        raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
            def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
         
     | 
| 325 | 
         
            +
                state_dict = OrderedDict()
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                # buffers
         
     | 
| 328 | 
         
            +
                buffers = zero_model_states[0].buffers
         
     | 
| 329 | 
         
            +
                state_dict.update(buffers)
         
     | 
| 330 | 
         
            +
                if debug:
         
     | 
| 331 | 
         
            +
                    print(f"added {len(buffers)} buffers")
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                _zero2_merge_frozen_params(state_dict, zero_model_states)
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                # recover shared parameters
         
     | 
| 338 | 
         
            +
                for pair in zero_model_states[0].shared_params:
         
     | 
| 339 | 
         
            +
                    if pair[1] in state_dict:
         
     | 
| 340 | 
         
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                return state_dict
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
            def zero3_partitioned_param_info(unpartitioned_numel, world_size):
         
     | 
| 346 | 
         
            +
                remainder = unpartitioned_numel % world_size
         
     | 
| 347 | 
         
            +
                padding_numel = (world_size - remainder) if remainder else 0
         
     | 
| 348 | 
         
            +
                partitioned_numel = math.ceil(unpartitioned_numel / world_size)
         
     | 
| 349 | 
         
            +
                return partitioned_numel, padding_numel
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
            def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
         
     | 
| 353 | 
         
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         
     | 
| 354 | 
         
            +
                    return
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                if debug:
         
     | 
| 357 | 
         
            +
                    for i in range(world_size):
         
     | 
| 358 | 
         
            +
                        num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
         
     | 
| 359 | 
         
            +
                        print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         
     | 
| 362 | 
         
            +
                    wanted_params = len(frozen_param_shapes)
         
     | 
| 363 | 
         
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         
     | 
| 364 | 
         
            +
                    avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
         
     | 
| 365 | 
         
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         
     | 
| 366 | 
         
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                total_params = 0
         
     | 
| 369 | 
         
            +
                total_numel = 0
         
     | 
| 370 | 
         
            +
                for name, shape in zero_model_states[0].frozen_param_shapes.items():
         
     | 
| 371 | 
         
            +
                    total_params += 1
         
     | 
| 372 | 
         
            +
                    unpartitioned_numel = shape.numel()
         
     | 
| 373 | 
         
            +
                    total_numel += unpartitioned_numel
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                    param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
         
     | 
| 376 | 
         
            +
                    state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    if debug:
         
     | 
| 381 | 
         
            +
                        print(
         
     | 
| 382 | 
         
            +
                            f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         
     | 
| 383 | 
         
            +
                        )
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
            def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         
     | 
| 389 | 
         
            +
                param_shapes = zero_model_states[0].param_shapes
         
     | 
| 390 | 
         
            +
                avail_numel = fp32_flat_groups[0].numel() * world_size
         
     | 
| 391 | 
         
            +
                # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
         
     | 
| 392 | 
         
            +
                # param, re-consolidating each param, while dealing with padding if any
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                # merge list of dicts, preserving order
         
     | 
| 395 | 
         
            +
                param_shapes = {k: v for d in param_shapes for k, v in d.items()}
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                if debug:
         
     | 
| 398 | 
         
            +
                    for i in range(world_size):
         
     | 
| 399 | 
         
            +
                        print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    wanted_params = len(param_shapes)
         
     | 
| 402 | 
         
            +
                    wanted_numel = sum(shape.numel() for shape in param_shapes.values())
         
     | 
| 403 | 
         
            +
                    # not asserting if there is a mismatch due to possible padding
         
     | 
| 404 | 
         
            +
                    avail_numel = fp32_flat_groups[0].numel() * world_size
         
     | 
| 405 | 
         
            +
                    print(f"Trainable params: Have {avail_numel} numels to process.")
         
     | 
| 406 | 
         
            +
                    print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                # params
         
     | 
| 409 | 
         
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         
     | 
| 410 | 
         
            +
                # out-of-core computing solution
         
     | 
| 411 | 
         
            +
                offset = 0
         
     | 
| 412 | 
         
            +
                total_numel = 0
         
     | 
| 413 | 
         
            +
                total_params = 0
         
     | 
| 414 | 
         
            +
                for name, shape in param_shapes.items():
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    unpartitioned_numel = shape.numel()
         
     | 
| 417 | 
         
            +
                    total_numel += unpartitioned_numel
         
     | 
| 418 | 
         
            +
                    total_params += 1
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    if debug:
         
     | 
| 423 | 
         
            +
                        print(
         
     | 
| 424 | 
         
            +
                            f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         
     | 
| 425 | 
         
            +
                        )
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    # XXX: memory usage doubles here
         
     | 
| 428 | 
         
            +
                    state_dict[name] = torch.cat(
         
     | 
| 429 | 
         
            +
                        tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
         
     | 
| 430 | 
         
            +
                        0).narrow(0, 0, unpartitioned_numel).view(shape)
         
     | 
| 431 | 
         
            +
                    offset += partitioned_numel
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                offset *= world_size
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                # Sanity check
         
     | 
| 436 | 
         
            +
                if offset != avail_numel:
         
     | 
| 437 | 
         
            +
                    raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
            def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
         
     | 
| 443 | 
         
            +
                state_dict = OrderedDict()
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                # buffers
         
     | 
| 446 | 
         
            +
                buffers = zero_model_states[0].buffers
         
     | 
| 447 | 
         
            +
                state_dict.update(buffers)
         
     | 
| 448 | 
         
            +
                if debug:
         
     | 
| 449 | 
         
            +
                    print(f"added {len(buffers)} buffers")
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                # recover shared parameters
         
     | 
| 456 | 
         
            +
                for pair in zero_model_states[0].shared_params:
         
     | 
| 457 | 
         
            +
                    if pair[1] in state_dict:
         
     | 
| 458 | 
         
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                return state_dict
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
            def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
         
     | 
| 464 | 
         
            +
                """
         
     | 
| 465 | 
         
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
         
     | 
| 466 | 
         
            +
                ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
         
     | 
| 467 | 
         
            +
                via a model hub.
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                Args:
         
     | 
| 470 | 
         
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder
         
     | 
| 471 | 
         
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                Returns:
         
     | 
| 474 | 
         
            +
                    - pytorch ``state_dict``
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                Note: this approach may not work if your application doesn't have sufficient free CPU memory and
         
     | 
| 477 | 
         
            +
                you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
         
     | 
| 478 | 
         
            +
                the checkpoint.
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                A typical usage might be ::
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         
     | 
| 483 | 
         
            +
                    # do the training and checkpoint saving
         
     | 
| 484 | 
         
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
         
     | 
| 485 | 
         
            +
                    model = model.cpu() # move to cpu
         
     | 
| 486 | 
         
            +
                    model.load_state_dict(state_dict)
         
     | 
| 487 | 
         
            +
                    # submit to model hub or save the model to share with others
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                In this example the ``model`` will no longer be usable in the deepspeed context of the same
         
     | 
| 490 | 
         
            +
                application. i.e. you will need to re-initialize the deepspeed engine, since
         
     | 
| 491 | 
         
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                """
         
     | 
| 496 | 
         
            +
                if tag is None:
         
     | 
| 497 | 
         
            +
                    latest_path = os.path.join(checkpoint_dir, 'latest')
         
     | 
| 498 | 
         
            +
                    if os.path.isfile(latest_path):
         
     | 
| 499 | 
         
            +
                        with open(latest_path, 'r') as fd:
         
     | 
| 500 | 
         
            +
                            tag = fd.read().strip()
         
     | 
| 501 | 
         
            +
                    else:
         
     | 
| 502 | 
         
            +
                        raise ValueError(f"Unable to find 'latest' file at {latest_path}")
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                if not os.path.isdir(ds_checkpoint_dir):
         
     | 
| 507 | 
         
            +
                    raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
            def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
         
     | 
| 513 | 
         
            +
                """
         
     | 
| 514 | 
         
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
         
     | 
| 515 | 
         
            +
                loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                Args:
         
     | 
| 518 | 
         
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         
     | 
| 519 | 
         
            +
                    - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
         
     | 
| 520 | 
         
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         
     | 
| 521 | 
         
            +
                """
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         
     | 
| 524 | 
         
            +
                print(f"Saving fp32 state dict to {output_file}")
         
     | 
| 525 | 
         
            +
                torch.save(state_dict, output_file)
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
            def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
         
     | 
| 529 | 
         
            +
                """
         
     | 
| 530 | 
         
            +
                1. Put the provided model to cpu
         
     | 
| 531 | 
         
            +
                2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
         
     | 
| 532 | 
         
            +
                3. Load it into the provided model
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                Args:
         
     | 
| 535 | 
         
            +
                    - ``model``: the model object to update
         
     | 
| 536 | 
         
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         
     | 
| 537 | 
         
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                Returns:
         
     | 
| 540 | 
         
            +
                    - ``model`: modified model
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                Make sure you have plenty of CPU memory available before you call this function. If you don't
         
     | 
| 543 | 
         
            +
                have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
         
     | 
| 544 | 
         
            +
                conveniently placed for you in the checkpoint folder.
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                A typical usage might be ::
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
         
     | 
| 549 | 
         
            +
                    model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
         
     | 
| 550 | 
         
            +
                    # submit to model hub or save the model to share with others
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
         
     | 
| 553 | 
         
            +
                of the same application. i.e. you will need to re-initialize the deepspeed engine, since
         
     | 
| 554 | 
         
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                """
         
     | 
| 557 | 
         
            +
                logger.info(f"Extracting fp32 weights")
         
     | 
| 558 | 
         
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                logger.info(f"Overwriting model with fp32 weights")
         
     | 
| 561 | 
         
            +
                model = model.cpu()
         
     | 
| 562 | 
         
            +
                model.load_state_dict(state_dict, strict=False)
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                return model
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                parser = argparse.ArgumentParser()
         
     | 
| 570 | 
         
            +
                parser.add_argument("checkpoint_dir",
         
     | 
| 571 | 
         
            +
                                    type=str,
         
     | 
| 572 | 
         
            +
                                    help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
         
     | 
| 573 | 
         
            +
                parser.add_argument(
         
     | 
| 574 | 
         
            +
                    "output_file",
         
     | 
| 575 | 
         
            +
                    type=str,
         
     | 
| 576 | 
         
            +
                    help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
         
     | 
| 577 | 
         
            +
                parser.add_argument("-t",
         
     | 
| 578 | 
         
            +
                                    "--tag",
         
     | 
| 579 | 
         
            +
                                    type=str,
         
     | 
| 580 | 
         
            +
                                    default=None,
         
     | 
| 581 | 
         
            +
                                    help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
         
     | 
| 582 | 
         
            +
                parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
         
     | 
| 583 | 
         
            +
                args = parser.parse_args()
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                debug = args.debug
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
         
     |