beingamit99 commited on
Commit
930548c
·
1 Parent(s): 8845e47

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -26
README.md CHANGED
@@ -1,44 +1,66 @@
1
- 🚗 Car Damage Predictor with llm VIT BEIT Architecture
2
-
3
- Unleash the power of cutting-edge vision transformers for precise car damage prediction! Introducing our fine-tuned model based on llm VIT BEIT, designed to classify car damage into six distinct classes with remarkable accuracy.
4
-
5
- 🔍 Key Features:
6
-
7
- <b>Advanced Vision Transformer (VIT): Benefit from the state-of-the-art llm VIT BEIT architecture, optimized for superior image understanding and feature extraction.
8
- Six-Class Prediction: Our model excels in distinguishing between six different classes of car damage, providing detailed insights for comprehensive analysis.
9
- Robust Fine-Tuning: Trained on diverse and extensive datasets, the model exhibits robust performance across various scenarios and damage types.
10
- Hugging Face Integration: Seamlessly integrate our model into your workflow using Hugging Face, the go-to platform for efficient and user-friendly model deployment.
11
- <br> <br>
12
- 🌐 Applications:
13
- </br>
14
- Insurance claim processing <br>
15
- Vehicle inspection automation <br>
16
- Fleet management optimization <br> <br>
17
- 🚀 Enhance your car damage prediction tasks with the llm VIT BEIT model. Experience unprecedented accuracy and reliability for a wide range of applications. Get started with Hugging Face integration today!
18
- <br>
19
- # How to use this model
20
-
21
- # First Approach
22
- <CODE>
 
 
 
 
 
 
 
 
 
 
 
 
23
  import numpy as np
24
  from PIL import Image
25
  from transformers import AutoImageProcessor, AutoModelForImageClassification
 
 
26
  processor = AutoImageProcessor.from_pretrained("beingamit99/car_damage_detection")
27
  model = AutoModelForImageClassification.from_pretrained("beingamit99/car_damage_detection")
 
 
28
  image = Image.open(IMAGE)
29
  inputs = processor(images=image, return_tensors="pt")
 
 
30
  outputs = model(**inputs)
31
  logits = outputs.logits.detach().cpu().numpy()
32
  predicted_class_id = np.argmax(logits)
33
  predicted_proba = np.max(logits)
34
  label_map = model.config.id2label
35
  predicted_class_name = label_map[predicted_class_id]
 
 
36
  print(f"Predicted class: {predicted_class_name} (probability: {predicted_proba:.4f})")
37
- </CODE> <br></br>
38
 
39
- # Second Aprroach
40
- <CODE>
41
  from transformers import pipeline
42
 
 
43
  pipe = pipeline("image-classification", model="beingamit99/car_damage_detection")
44
- </CODE>
 
 
1
+ # 🚗 Car Damage Prediction Model 🛠️
2
+
3
+ Predict car damage with confidence using the **llm VIT bEIT** model! This model is trained to classify car damage into six distinct classes:
4
+
5
+ - **"0"**: *Crack*
6
+ - **"1"**: *Scratch*
7
+ - **"2"**: *Tire Flat*
8
+ - **"3"**: *Dent*
9
+ - **"4"**: *Glass Shatter*
10
+ - **"5"**: *Lamp Broken*
11
+
12
+ ## Key Features 🔍
13
+
14
+ - Accurate classification into six car damage categories.
15
+ - Seamless integration into various applications.
16
+ - Streamlined image processing with transformer-based architecture.
17
+
18
+ ## Applications 🌐
19
+
20
+ This powerful car damage prediction model can be seamlessly integrated into various applications, such as:
21
+
22
+ - **Auto Insurance Claim Processing:** Streamline the assessment of car damage for faster claim processing.
23
+ - **Vehicle Inspection Services:** Enhance efficiency in vehicle inspection services by automating damage detection.
24
+ - **Used Car Marketplaces:** Provide detailed insights into the condition of used cars through automated damage analysis.
25
+
26
+ Feel free to explore and integrate this model into your applications for accurate car damage predictions! 🌟
27
+
28
+
29
+ ## How to Use This Model 🤖
30
+
31
+ ### Approach
32
+
33
+ ### First Approach
34
+ <code>
35
  import numpy as np
36
  from PIL import Image
37
  from transformers import AutoImageProcessor, AutoModelForImageClassification
38
+
39
+ # Load the model and image processor
40
  processor = AutoImageProcessor.from_pretrained("beingamit99/car_damage_detection")
41
  model = AutoModelForImageClassification.from_pretrained("beingamit99/car_damage_detection")
42
+
43
+ # Load and process the image
44
  image = Image.open(IMAGE)
45
  inputs = processor(images=image, return_tensors="pt")
46
+
47
+ # Make predictions
48
  outputs = model(**inputs)
49
  logits = outputs.logits.detach().cpu().numpy()
50
  predicted_class_id = np.argmax(logits)
51
  predicted_proba = np.max(logits)
52
  label_map = model.config.id2label
53
  predicted_class_name = label_map[predicted_class_id]
54
+
55
+ # Print the results
56
  print(f"Predicted class: {predicted_class_name} (probability: {predicted_proba:.4f})")
57
+ </code>
58
 
59
+ ### Second Approach
60
+ <code>
61
  from transformers import pipeline
62
 
63
+ # Create a classification pipeline
64
  pipe = pipeline("image-classification", model="beingamit99/car_damage_detection")
65
+ pipe(IMAGE)
66
+ </code>