Commit
·
1059070
1
Parent(s):
20180c2
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from PIL import Image
|
| 3 |
+
# Load model directly
|
| 4 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 5 |
+
|
| 6 |
+
processor = AutoImageProcessor.from_pretrained("beingamit99/car_damage_detection")
|
| 7 |
+
model = AutoModelForImageClassification.from_pretrained("beingamit99/car_damage_detection")
|
| 8 |
+
image = Image.open(IMAGE)
|
| 9 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 10 |
+
outputs = model(**inputs)
|
| 11 |
+
logits = outputs.logits.detach().cpu().numpy()
|
| 12 |
+
|
| 13 |
+
# Get the most likely class and its probability
|
| 14 |
+
predicted_class_id = np.argmax(logits)
|
| 15 |
+
predicted_proba = np.max(logits)
|
| 16 |
+
|
| 17 |
+
# Get the class name from the model's label map
|
| 18 |
+
label_map = model.config.id2label
|
| 19 |
+
predicted_class_name = label_map[predicted_class_id]
|
| 20 |
+
|
| 21 |
+
print(f"Predicted class: {predicted_class_name} (probability: {predicted_proba:.4f})")
|