Update README.md
Browse files
README.md
CHANGED
@@ -27,14 +27,18 @@ import torch
|
|
27 |
from parler_tts import ParlerTTSForConditionalGeneration
|
28 |
from transformers import AutoTokenizer
|
29 |
import soundfile as sf
|
|
|
30 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
31 |
model = ParlerTTSForConditionalGeneration.from_pretrained("atlithor/RepeaTTS-level-3").to(device)
|
32 |
tokenizer = AutoTokenizer.from_pretrained("atlithor/EmotiveIcelandic")
|
33 |
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
|
|
34 |
prompt = "Þetta er frábær hugmynd!" # E: this is a great idea!
|
35 |
description = "The recording is of very high quality, with Ingrid's voice sounding clear and very close up. Ingrid speaks at very high intensity."
|
|
|
36 |
input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
|
37 |
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
|
|
38 |
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
39 |
audio_arr = generation.cpu().numpy().squeeze()
|
40 |
sf.write("ingrid_intense.wav", audio_arr, model.config.sampling_rate)
|
|
|
27 |
from parler_tts import ParlerTTSForConditionalGeneration
|
28 |
from transformers import AutoTokenizer
|
29 |
import soundfile as sf
|
30 |
+
|
31 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
32 |
model = ParlerTTSForConditionalGeneration.from_pretrained("atlithor/RepeaTTS-level-3").to(device)
|
33 |
tokenizer = AutoTokenizer.from_pretrained("atlithor/EmotiveIcelandic")
|
34 |
description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
|
35 |
+
|
36 |
prompt = "Þetta er frábær hugmynd!" # E: this is a great idea!
|
37 |
description = "The recording is of very high quality, with Ingrid's voice sounding clear and very close up. Ingrid speaks at very high intensity."
|
38 |
+
|
39 |
input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
|
40 |
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
41 |
+
|
42 |
generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
|
43 |
audio_arr = generation.cpu().numpy().squeeze()
|
44 |
sf.write("ingrid_intense.wav", audio_arr, model.config.sampling_rate)
|