whisperkittools generated README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,85 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
pretty_name: "WhisperKit ASR Evaluation Results"
|
| 4 |
+
tags:
|
| 5 |
+
- whisper
|
| 6 |
+
- whisperkit
|
| 7 |
+
- coreml
|
| 8 |
+
- asr
|
| 9 |
+
- quantized
|
| 10 |
---
|
| 11 |
+
# WhisperKit Evaluation Results
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Dataset: `librispeech`
|
| 16 |
+
|
| 17 |
+
### Quality Evaluation
|
| 18 |
+
|
| 19 |
+
| | WER | QoI (%) | File Size (MB) |
|
| 20 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------:|----------:|-----------------:|
|
| 21 |
+
| [WhisperOpenAIAPI/openai_whisper-large-v2](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperOpenAIAPI/openai_whisper-large-v2) | 2.85 | 100 | 3100 |
|
| 22 |
+
| [WhisperKit/openai_whisper-large-v2](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v2) | 3.28 | 96.6 | 3100 |
|
| 23 |
+
| [WhisperKit/openai_whisper-large-v2_1050MB](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v2_1050MB) | 3.32 | 95 | 1050 |
|
| 24 |
+
| [WhisperKit/openai_whisper-large-v2_turbo](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v2_turbo) | 3.24 | 96.6 | 3100 |
|
| 25 |
+
| [WhisperKit/openai_whisper-large-v2_turbo_1022MB](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v2_turbo_1022MB) | 3.33 | 94.9 | 1022 |
|
| 26 |
+
| [whisper.cpp/openai_whisper-large-v2-q5_0](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/whisper.cpp/openai_whisper-large-v2-q5_0) | 2.8 | 96.6 | 1080 |
|
| 27 |
+
| [WhisperKit/openai_whisper-small](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-small) | 3.98 | 82.9 | 483 |
|
| 28 |
+
| [WhisperKit/openai_whisper-base](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-base) | 6.11 | 67.1 | 145 |
|
| 29 |
+
| [WhisperKit/openai_whisper-tiny](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-tiny) | 8.94 | 52.4 | 66 |
|
| 30 |
+
| [WhisperKit/openai_whisper-large-v3](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v3) | 2.48 | 95.2 | 3100 |
|
| 31 |
+
| [WhisperKit/openai_whisper-large-v3_turbo](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/WhisperKit/openai_whisper-large-v3_turbo) | 2.44 | 95.4 | 3100 |
|
| 32 |
+
| [openai_whisper-large-v3_turbo_1018MB](https://huggingface.co/argmaxinc/whisperkit-coreml-staging/tree/main/openai_whisper-large-v3_turbo_1018MB) | 2.49 | 94.8 | 1018 |
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
### Quality-of-Inference (QoI) Certification
|
| 36 |
+
We believe that rigorously measuring the quality of inference is necessary for developers and
|
| 37 |
+
enterprises to make informed decisions when opting to use optimized or compressed variants of
|
| 38 |
+
Whisper models in production. The current measurements are between reference and optimized
|
| 39 |
+
WhisperKit models. We are going to extend the scope of this measurement to other Whisper
|
| 40 |
+
implementations soon so developers can certify the behavior change (if any) caused by
|
| 41 |
+
alternating use of WhisperKit with (or migration from) these implementations.
|
| 42 |
+
|
| 43 |
+
In all measurements, we care primarily about per-example no-regressions (quantified as `qoi` below)
|
| 44 |
+
which is a stricter metric compared to dataset average WER. A 100% `qoi` preserves perfect
|
| 45 |
+
backwards-compatibility on the test distribution and avoids "perceived regressions", the phenomenon
|
| 46 |
+
where per-example known behavior changes after a code/model update and causes divergence in
|
| 47 |
+
downstream code or breaks the user experience itself (even if dataset averages might stay flat
|
| 48 |
+
across updates). Pseudocode for `qoi`:
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
qoi = []
|
| 52 |
+
for example in dataset:
|
| 53 |
+
no_regression = wer(optimized_model(example)) <= wer(reference_model(example))
|
| 54 |
+
qoi.append(no_regression)
|
| 55 |
+
qoi = (sum(qoi) / len(qoi)) * 100.
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
We define the reference model as the default float16 precision Core ML model that is generated by
|
| 59 |
+
whisperkittools. This reference model matches the accuracy of the original PyTorch model
|
| 60 |
+
on the specified test sets. We use `librispeech/test.clean` (5 hours of short English audio clips)
|
| 61 |
+
as our testing set for Whisper. We are actively expanding our test set coverage to `earnings22`
|
| 62 |
+
(120 hours of long English audio clips with various accents). We anticipate developers that use Whisper in production to have
|
| 63 |
+
their own Quality Assurance test sets and whisperkittools offers the tooling necessary to run the
|
| 64 |
+
same measurements on such custom test sets, please see the [Model Evaluation on Custom Dataset](#evaluate-on-custom-dataset)
|
| 65 |
+
for details.
|
| 66 |
+
|
| 67 |
+
### Reproducing Results
|
| 68 |
+
Results in this page are generated by our cluster of Apple Silicon Macs. We use them as self-hosted runners on
|
| 69 |
+
Github Actions as our CI infrastructure. Due to [security concerns](https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#hardening-for-self-hosted-runners),
|
| 70 |
+
we are unable to open up the cluster to the public. However, any Apple Silicon Mac (even with 8GB RAM) can be used to
|
| 71 |
+
run identical [evaluation jobs](#evaluation)
|
| 72 |
+
locally. For reference, our M2 Ultra devices complete a `librispeech` + `openai/whisper-large-v3`
|
| 73 |
+
evaluation in under 1 hour regardless of the Whisper implementation. Older Apple Silicon Macs should take less than
|
| 74 |
+
1 day to complete the same evaluation.
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
Glossary:
|
| 79 |
+
|
| 80 |
+
- `_turbo`: Indicates the presence of additional optimizations (not compression) to unlock streaming transcription
|
| 81 |
+
as described in our [Blog Post](https://www.takeargmax.com/blog/whisperkit).
|
| 82 |
+
|
| 83 |
+
- `_*MB`: Indicates the presence of mixed-bit quantization. Instead of cluttering the filename with details like
|
| 84 |
+
`_AudioEncoder-5.8bits_TextDecoder-6.1bits`, we choose to summarize the compression spec as the resulting total file size since this is what matters to developers in production.
|
| 85 |
+
|