plaguss commited on
Commit
4e87c66
·
verified ·
1 Parent(s): da958fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -18
README.md CHANGED
@@ -16,17 +16,24 @@ language:
16
 
17
  # Model Card for Llama-3.2-1B-Instruct-APIGen-FC-v0.1
18
 
19
- This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [argilla-warehouse/apigen-synth-trl](https://huggingface.co/datasets/plaguss/apigen-synth-trl) dataset.
 
 
20
  It has been trained using [TRL](https://github.com/huggingface/trl).
21
 
22
  ## Quick start
23
 
24
- See different examples of using the model:
 
 
25
 
26
- <details><summary> Click to see prepare_messages function </summary>
 
 
27
 
28
  ````python
29
  from typing import Optional
 
30
  import json
31
 
32
  from jinja2 import Template
@@ -82,17 +89,7 @@ def prepare_messages(
82
  ]
83
 
84
  return messages
85
-
86
- ````
87
 
88
- </details>
89
-
90
-
91
- <details><summary> Click to see parse_response function </summary>
92
-
93
- ```python
94
- import re
95
- import json
96
 
97
  def parse_response(text: str) -> str | dict[str, any]:
98
  """Parses a response from the model, returning either the
@@ -107,10 +104,8 @@ def parse_response(text: str) -> str | dict[str, any]:
107
  if matches:
108
  return json.loads(matches[0])
109
  return text
110
-
111
- ```
112
-
113
- </details>
114
 
115
 
116
  Example of *simple* function call:
@@ -119,7 +114,7 @@ Example of *simple* function call:
119
  import torch
120
  from transformers import AutoModelForCausalLM, AutoTokenizer
121
 
122
- model_name = "plaguss/Llama-3.2-1B-Instruct-APIGen-FC-v0.1"
123
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
124
  tokenizer = AutoTokenizer.from_pretrained(model_name)
125
 
 
16
 
17
  # Model Card for Llama-3.2-1B-Instruct-APIGen-FC-v0.1
18
 
19
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on
20
+ the [argilla-warehouse/apigen-synth-trl](https://huggingface.co/datasets/plaguss/apigen-synth-trl) dataset, a version of
21
+ [argilla-warehouse/Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla-warehouse/Synth-APIGen-v0.1) ready to do SFT.
22
  It has been trained using [TRL](https://github.com/huggingface/trl).
23
 
24
  ## Quick start
25
 
26
+ This is a Fine tuned version of `Llama-3.2-1B-Instruct` model specific for Function Calling, to showcase how to fine tune a model on top of a dataset
27
+ like [argilla-warehouse/Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla-warehouse/Synth-APIGen-v0.1). This dataset can be merged with the original
28
+ [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) and prepared with any custom format.
29
 
30
+ The following examples show how to use the model with transformers, for different types of queries and availability of tools:
31
+
32
+ <details><summary> Click to see helper functions </summary>
33
 
34
  ````python
35
  from typing import Optional
36
+ import re
37
  import json
38
 
39
  from jinja2 import Template
 
89
  ]
90
 
91
  return messages
 
 
92
 
 
 
 
 
 
 
 
 
93
 
94
  def parse_response(text: str) -> str | dict[str, any]:
95
  """Parses a response from the model, returning either the
 
104
  if matches:
105
  return json.loads(matches[0])
106
  return text
107
+
108
+ ````
 
 
109
 
110
 
111
  Example of *simple* function call:
 
114
  import torch
115
  from transformers import AutoModelForCausalLM, AutoTokenizer
116
 
117
+ model_name = "argilla-warehouse/Llama-3.2-1B-Instruct-APIGen-FC-v0.1"
118
  model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
119
  tokenizer = AutoTokenizer.from_pretrained(model_name)
120