Update README.md
Browse filesadd inference example
README.md
CHANGED
|
@@ -16,12 +16,59 @@ The DiffuCoder-7B-Base model is our foundational masked diffusion LLM for code g
|
|
| 16 |
|
| 17 |
- Benchmarks: Strong baseline performance on HumanEval, MBPP and BigCodeBench.
|
| 18 |
|
| 19 |
-
|
| 20 |
#### More details and usage examples:
|
| 21 |
|
| 22 |
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)
|
| 23 |
|
| 24 |
- GitHub: https://github.com/apple/ml-diffucoder
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
#### Acknowledgement
|
| 27 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|
|
|
|
| 16 |
|
| 17 |
- Benchmarks: Strong baseline performance on HumanEval, MBPP and BigCodeBench.
|
| 18 |
|
|
|
|
| 19 |
#### More details and usage examples:
|
| 20 |
|
| 21 |
- Paper: [DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation](https://arxiv.org/abs/2506.20639)
|
| 22 |
|
| 23 |
- GitHub: https://github.com/apple/ml-diffucoder
|
| 24 |
|
| 25 |
+
```
|
| 26 |
+
import torch
|
| 27 |
+
from transformers import AutoModel, AutoTokenizer
|
| 28 |
+
|
| 29 |
+
model_path = "apple/DiffuCoder-7B-Base"
|
| 30 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 32 |
+
model = model.to("cuda").eval()
|
| 33 |
+
|
| 34 |
+
prompt = """
|
| 35 |
+
from typing import List
|
| 36 |
+
|
| 37 |
+
def has_close_elements(numbers: List[float], threshold: float) -> bool:
|
| 38 |
+
\"\"\"
|
| 39 |
+
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
|
| 40 |
+
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
|
| 41 |
+
False
|
| 42 |
+
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
|
| 43 |
+
True
|
| 44 |
+
\"\"\"
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
TOKEN_PER_STEP = 1 # diffusion timesteps * TOKEN_PER_STEP = total new tokens
|
| 48 |
+
|
| 49 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 50 |
+
input_ids = inputs.input_ids.to(device="cuda")
|
| 51 |
+
attention_mask = inputs.attention_mask.to(device="cuda")
|
| 52 |
+
|
| 53 |
+
output = model.diffusion_generate(
|
| 54 |
+
input_ids,
|
| 55 |
+
attention_mask=attention_mask,
|
| 56 |
+
max_new_tokens=256,
|
| 57 |
+
output_history=True,
|
| 58 |
+
return_dict_in_generate=True,
|
| 59 |
+
steps=256//TOKEN_PER_STEP,
|
| 60 |
+
temperature=0.2,
|
| 61 |
+
top_p=0.95,
|
| 62 |
+
alg="entropy",
|
| 63 |
+
alg_temp=0.,
|
| 64 |
+
)
|
| 65 |
+
generations = [
|
| 66 |
+
tokenizer.decode(g[len(p) :].tolist())
|
| 67 |
+
for p, g in zip(input_ids, output.sequences)
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
print(generations[0].split(tokenizer.eos_token)[0])
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
#### Acknowledgement
|
| 74 |
To power this HuggingFace model release, we reuse [Dream](https://huggingface.co/Dream-org/Dream-v0-Base-7B)'s modeling architecture and generation utils.
|