Upload mohanism_195 (1).py
Browse files- mohanism_195 (1).py +111 -0
mohanism_195 (1).py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""mohanism.195
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1AvIdAQmhCWUUe6rT9sck2gBGkecNCjEc
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install dotenv
|
| 11 |
+
|
| 12 |
+
from dotenv import load_dotenv,find_dotenv
|
| 13 |
+
load_dotenv(find_dotenv())
|
| 14 |
+
|
| 15 |
+
from langchain.llns import OpenAI
|
| 16 |
+
llm = OpenAI(model_name="text-davinci-003")
|
| 17 |
+
llm("explain large language models in one sentence")
|
| 18 |
+
|
| 19 |
+
from langchain.schema import (
|
| 20 |
+
AIMessage,
|
| 21 |
+
HumanMessage,
|
| 22 |
+
SystemMessage
|
| 23 |
+
)
|
| 24 |
+
from langchain.chat_models import ChatOpenAI
|
| 25 |
+
|
| 26 |
+
chat = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.3)
|
| 27 |
+
messages = (
|
| 28 |
+
SystemMessage(content="You are an expert data scientist"),
|
| 29 |
+
HumanMessage(content="Write a Python script that trains a neural network on simulated data ")
|
| 30 |
+
)
|
| 31 |
+
response=chat(messages)
|
| 32 |
+
|
| 33 |
+
print(response.content,ends="\n")
|
| 34 |
+
|
| 35 |
+
from langchain import PromptTemplate
|
| 36 |
+
|
| 37 |
+
template = """You are an expert data scientist with an expertise in building deep learning models,
|
| 38 |
+
Explain the concept of {concept} in a couple of lines
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
prompt = PromptTemplate(
|
| 42 |
+
input_variable=["concept"],
|
| 43 |
+
template=template,
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
prompt
|
| 47 |
+
|
| 48 |
+
llm(prompt.format(concept="autoencoder"))
|
| 49 |
+
|
| 50 |
+
from langchain.chains import LLMChain
|
| 51 |
+
chain = LLMchain(llm=lln, prompt=prompt)
|
| 52 |
+
|
| 53 |
+
second_prompt = PromptTemplate(
|
| 54 |
+
input_variables=["ml_concept"],
|
| 55 |
+
template="Turn the concept description of {ml_concept} and explain it to me like I'm five in 500 words",
|
| 56 |
+
)
|
| 57 |
+
chain_two = LLMChain(llm=llm, prompt=second_prompt)
|
| 58 |
+
|
| 59 |
+
from langchain.chains import SimpleSequenttialChain
|
| 60 |
+
overall_chain = SimpleSequenttialChain(chains=[chain, chain_two], verbose=True)
|
| 61 |
+
|
| 62 |
+
explanation = overall_chain.run("autoencoder")
|
| 63 |
+
print(explanation)
|
| 64 |
+
|
| 65 |
+
from langchain.text_splitter importRecursiveCharacterTextSplitter
|
| 66 |
+
|
| 67 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 68 |
+
chunk_size = 100,
|
| 69 |
+
chunk_overlap = 0,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
text = text_splitter.create_documents([explanation])
|
| 73 |
+
|
| 74 |
+
text[0].page_content
|
| 75 |
+
|
| 76 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 77 |
+
|
| 78 |
+
embeddings = OpenAIEmbeddings(model_name="ada")
|
| 79 |
+
|
| 80 |
+
query_result = embeddings.embed_query(texts[0].page_content)
|
| 81 |
+
query_result
|
| 82 |
+
|
| 83 |
+
import os
|
| 84 |
+
import pinecome
|
| 85 |
+
from langchain.vectors import Pinecone
|
| 86 |
+
|
| 87 |
+
# initialize pinecome
|
| 88 |
+
pinecome.init(
|
| 89 |
+
api_key=os.getenv["PINECONE_API_KEY"],
|
| 90 |
+
environment(=os.getenv("PINECONE_ENV")
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
index_name = "langchain-quickstart"
|
| 94 |
+
search = Pinecone.form_documents(texts, embeddings, index_name=index_name)
|
| 95 |
+
|
| 96 |
+
query = "What is magical about an autoencoder?"
|
| 97 |
+
result = search.similarity_search(query)
|
| 98 |
+
|
| 99 |
+
result
|
| 100 |
+
|
| 101 |
+
from langhain.agent.agent_toolkets import create_python_agent
|
| 102 |
+
from langchain.tools.python.tool import PythonREPLTool
|
| 103 |
+
from langchain.python import PythonREPL
|
| 104 |
+
from langchain.llms.openai import OpenAI
|
| 105 |
+
|
| 106 |
+
agent_executor = create_python_agent(
|
| 107 |
+
llm=OpenAI(temperature=0), max_tokens=1000),
|
| 108 |
+
verbose=True
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
agent_executor.run("Find the roots (zeros) if the quadratic function 3 * x==2 + 2** - 1")
|