|
|
|
|
|
|
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer |
|
import evaluate |
|
|
|
|
|
dataset = load_dataset("imdb") |
|
|
|
|
|
model_name = "distilbert-base-uncased" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
def tokenize_fn(batch): |
|
return tokenizer(batch["text"], truncation=True, padding="max_length", max_length=256) |
|
|
|
tokenized_datasets = dataset.map(tokenize_fn, batched=True) |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) |
|
|
|
|
|
accuracy = evaluate.load("accuracy") |
|
|
|
def compute_metrics(eval_pred): |
|
logits, labels = eval_pred |
|
predictions = torch.argmax(torch.tensor(logits), dim=-1) |
|
return accuracy.compute(predictions=predictions, references=labels) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
logging_dir="./logs", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
num_train_epochs=1, |
|
weight_decay=0.01, |
|
push_to_hub=False, |
|
save_safetensors=True |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(2000)), |
|
eval_dataset=tokenized_datasets["test"].shuffle(seed=42).select(range(500)), |
|
tokenizer=tokenizer, |
|
compute_metrics=compute_metrics |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model("./final_safetensors_model") |
|
tokenizer.save_pretrained("./final_safetensors_model") |
|
|
|
print("✅ Training complete. Model saved in safetensors format at './final_safetensors_model'") |
|
|