File size: 2,516 Bytes
bb2544d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Install these before running:
# pip install torch transformers datasets safetensors accelerate

import torch
from datasets import load_dataset
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    Trainer,
    TrainingArguments,
    DataCollatorForLanguageModeling
)

# 1️⃣ Load a Python code dataset (small subset for quick training)
print("📥 Loading dataset...")
dataset = load_dataset("codeparrot/codeparrot-clean", split="train[:1%]")  # only 1% for demo

# 2️⃣ Load tokenizer
model_name = "distilgpt2"  # small GPT-2 model
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token  # avoid pad token error

# Tokenization function
def tokenize_fn(examples):
    return tokenizer(examples["content"], truncation=True, padding="max_length", max_length=128)

print("🔤 Tokenizing dataset...")
tokenized_dataset = dataset.map(tokenize_fn, batched=True, remove_columns=["content"])

# 3️⃣ Data Collator (for causal language modeling)
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

# 4️⃣ Load GPT model
print("⚙️ Loading model...")
model = AutoModelForCausalLM.from_pretrained(model_name)

# 5️⃣ Training arguments
training_args = TrainingArguments(
    output_dir="./mini_gpt_code",
    overwrite_output_dir=True,
    evaluation_strategy="no",
    per_device_train_batch_size=2,
    num_train_epochs=1,
    save_strategy="epoch",
    logging_dir="./logs",
    save_safetensors=True,  # Save in safetensors format
    fp16=torch.cuda.is_available(),
    push_to_hub=False
)

# 6️⃣ Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
    tokenizer=tokenizer,
    data_collator=data_collator
)

# 7️⃣ Train model
print("🚀 Training started...")
trainer.train()

# 8️⃣ Save final safetensors model
save_path = "./mini_gpt_code_safetensors"
trainer.save_model(save_path)
tokenizer.save_pretrained(save_path)
print(f"✅ Training complete. Model saved at {save_path}")

# 9️⃣ Inference (code generation)
print("💻 Generating Python code...")
prompt = "Write a Python function to calculate factorial:\n"
inputs = tokenizer(prompt, return_tensors="pt")

model.eval()
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_length=100,
        temperature=0.7,
        do_sample=True,
        top_p=0.9
    )

print("\nGenerated Code:\n")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))