File size: 10,671 Bytes
ba18ff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import asyncio
import json
import logging
import sys
import os
from typing import Any, Dict, List, Optional
from llama_cpp import Llama
from mcp.server.models import InitializationOptions
from mcp.server import NotificationOptions, Server
from mcp.types import (
    Resource,
    Tool,
    TextContent,
    ImageContent,
    EmbeddedResource,
    LoggingLevel
)
import mcp.types as types
from pydantic import AnyUrl
import mcp.server.stdio
from config import config

# Setup logging
logging.basicConfig(level=getattr(logging, config.log_level), format='%(asctime)s - %(levelname)s - %(message)s')


class MCPLLMInterface:
    """MCP interface for local LLM model using llama-cpp-python"""
    
    def __init__(self, model_path: str):
        self.model_path = model_path
        self.llm = None
        self.server = Server("deepseek-mcp-server")
        self.logger = logging.getLogger(__name__)
        self._setup_handlers()
    
    def _setup_handlers(self):
        """Setup MCP server handlers"""
        
        @self.server.list_resources()
        async def handle_list_resources() -> List[Resource]:
            """List available resources"""
            return [
                Resource(
                    uri=AnyUrl("llm://deepseek/chat"),
                    name="DeepSeek Chat",
                    description="Chat interface to DeepSeek 7B model",
                    mimeType="text/plain"
                )
            ]
        
        @self.server.read_resource()
        async def handle_read_resource(uri: AnyUrl) -> str:
            """Read resource content"""
            if str(uri) == "llm://deepseek/chat":
                return "DeepSeek 7B Chat Model - Ready for conversation"
            else:
                raise ValueError(f"Unknown resource: {uri}")
        
        @self.server.list_tools()
        async def handle_list_tools() -> List[Tool]:
            """List available tools"""
            return [
                Tool(
                    name="chat",
                    description="Chat with the DeepSeek 7B model",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "message": {
                                "type": "string",
                                "description": "Message to send to the model"
                            },
                            "max_tokens": {
                                "type": "integer",
                                "description": "Maximum tokens to generate",
                                "default": 512
                            },
                            "temperature": {
                                "type": "number",
                                "description": "Temperature for sampling",
                                "default": 0.7
                            }
                        },
                        "required": ["message"]
                    }
                ),
                Tool(
                    name="generate",
                    description="Generate text completion with the DeepSeek model",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "prompt": {
                                "type": "string",
                                "description": "Prompt for text generation"
                            },
                            "max_tokens": {
                                "type": "integer",
                                "description": "Maximum tokens to generate",
                                "default": 256
                            },
                            "temperature": {
                                "type": "number",
                                "description": "Temperature for sampling",
                                "default": 0.7
                            }
                        },
                        "required": ["prompt"]
                    }
                )
            ]
        
        @self.server.call_tool()
        async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[types.TextContent | types.ImageContent | types.EmbeddedResource]:
            """Handle tool calls"""
            try:
                if not self.llm:
                    await self._load_model()
                
                if name == "chat":
                    return await self._handle_chat(arguments)
                elif name == "generate":
                    return await self._handle_generate(arguments)
                else:
                    raise ValueError(f"Unknown tool: {name}")
            except Exception as e:
                self.logger.error(f"Error handling tool call '{name}': {e}")
                return [TextContent(
                    type="text",
                    text=f"Error: {str(e)}"
                )]
    
    async def _load_model(self):
        """Load the LLM model"""
        if self.llm is None:
            try:
                self.logger.info(f"Loading model from: {self.model_path}")
                
                # Use configuration for model parameters
                n_gpu_layers = config.n_gpu_layers
                
                # Detect GPU availability and adjust layers if needed
                try:
                    import llama_cpp
                    self.logger.info(f"Attempting to use {n_gpu_layers} GPU layers")
                except Exception as e:
                    self.logger.warning(f"GPU detection issue: {e}")
                    n_gpu_layers = 0
                    self.logger.info("Falling back to CPU only")
                
                # Load model in executor to avoid blocking
                loop = asyncio.get_event_loop()
                self.llm = await loop.run_in_executor(
                    None,
                    lambda: Llama(
                        model_path=self.model_path,
                        n_ctx=config.n_ctx,
                        n_gpu_layers=n_gpu_layers,
                        n_threads=config.n_threads,
                        n_batch=config.n_batch,
                        verbose=False,
                        use_mlock=config.use_mlock,
                        low_vram=config.low_vram,
                    )
                )
                
                self.logger.info("Model loaded successfully")
                
            except Exception as e:
                self.logger.error(f"Failed to load model: {e}")
                raise RuntimeError(f"Model loading failed: {e}")
    
    async def _handle_chat(self, arguments: Dict[str, Any]) -> List[TextContent]:
        """Handle chat requests"""
        try:
            message = arguments["message"]
            max_tokens = arguments.get("max_tokens", config.default_max_tokens)
            temperature = arguments.get("temperature", config.default_temperature)
            
            self.logger.info(f"Processing chat request: {message[:50]}...")
            
            # Format as chat prompt for DeepSeek
            prompt = f"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n"
            
            # Run inference in executor to avoid blocking
            loop = asyncio.get_event_loop()
            response = await loop.run_in_executor(
                None,
                lambda: self.llm(
                    prompt,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=config.default_top_p,
                    repeat_penalty=config.default_repeat_penalty,
                    stop=["<|eot_id|>", "<|end_of_text|>", "user:", "User:"]
                )
            )
            
            response_text = response["choices"][0]["text"].strip()
            self.logger.info(f"Generated response: {len(response_text)} characters")
            
            return [TextContent(
                type="text",
                text=response_text
            )]
            
        except Exception as e:
            self.logger.error(f"Error in chat handling: {e}")
            return [TextContent(
                type="text",
                text=f"Sorry, I encountered an error: {str(e)}"
            )]
    
    async def _handle_generate(self, arguments: Dict[str, Any]) -> List[TextContent]:
        """Handle text generation requests"""
        try:
            prompt = arguments["prompt"]
            max_tokens = arguments.get("max_tokens", min(config.default_max_tokens, 256))
            temperature = arguments.get("temperature", config.default_temperature)
            
            self.logger.info(f"Processing generation request: {prompt[:50]}...")
            
            # Run inference in executor to avoid blocking
            loop = asyncio.get_event_loop()
            response = await loop.run_in_executor(
                None,
                lambda: self.llm(
                    prompt,
                    max_tokens=max_tokens,
                    temperature=temperature,
                    top_p=0.9,
                    repeat_penalty=1.1
                )
            )
            
            response_text = response["choices"][0]["text"]
            self.logger.info(f"Generated text: {len(response_text)} characters")
            
            return [TextContent(
                type="text",
                text=response_text
            )]
            
        except Exception as e:
            self.logger.error(f"Error in text generation: {e}")
            return [TextContent(
                type="text",
                text=f"Sorry, I encountered an error: {str(e)}"
            )]
    
    async def run(self):
        """Run the MCP server"""
        try:
            self.logger.info("Starting DeepSeek MCP Server...")
            
            async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
                await self.server.run(
                    read_stream,
                    write_stream,
                    InitializationOptions(
                        server_name=config.server_name,
                        server_version=config.server_version,
                        capabilities=self.server.get_capabilities(
                            notification_options=NotificationOptions(),
                            experimental_capabilities={}
                        )
                    )
                )
        except Exception as e:
            self.logger.error(f"Server error: {e}")
            raise