Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Using a Trained Mini-GPT Model (Safetensors)
|
2 |
+
|
3 |
+
This guide explains how to **load a trained Mini-GPT model** saved in `safetensors` format and generate text using it.
|
4 |
+
It is written in a step-by-step manner for **learning and understanding**.
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## 1️⃣ Install Required Packages
|
9 |
+
|
10 |
+
Make sure you have the necessary packages:
|
11 |
+
|
12 |
+
```bash
|
13 |
+
pip install torch transformers safetensors
|
14 |
+
```
|
15 |
+
## 2️⃣ Load the Trained Model and Tokenizer
|
16 |
+
We saved our model earlier in ./mini_gpt_safetensor.
|
17 |
+
Here’s how to load it:
|
18 |
+
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
22 |
+
|
23 |
+
model_path = "./mini_gpt_safetensor" # Path to your saved model
|
24 |
+
|
25 |
+
# Load tokenizer
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
27 |
+
tokenizer.pad_token = tokenizer.eos_token # GPT models don't have pad_token
|
28 |
+
|
29 |
+
# Load model
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") # auto uses GPU if available
|
31 |
+
```
|
32 |
+
Note: Using device_map="auto" will load the model on GPU if available, otherwise CPU.
|
33 |
+
|
34 |
+
## 3️⃣ Generate Text from a Prompt
|
35 |
+
Once the model is loaded, we can generate text using a simple function:
|
36 |
+
|
37 |
+
```python
|
38 |
+
def generate_text(prompt, max_length=50):
|
39 |
+
# Tokenize prompt
|
40 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
41 |
+
input_ids = input_ids.to(model.device)
|
42 |
+
|
43 |
+
# Generate text
|
44 |
+
output_ids = model.generate(
|
45 |
+
input_ids,
|
46 |
+
max_length=max_length,
|
47 |
+
do_sample=True, # enable randomness
|
48 |
+
top_k=50, # sample from top 50 tokens
|
49 |
+
top_p=0.95, # nucleus sampling
|
50 |
+
temperature=0.7, # creativity factor
|
51 |
+
num_return_sequences=1
|
52 |
+
)
|
53 |
+
|
54 |
+
# Decode output
|
55 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
56 |
+
return output_text
|
57 |
+
```
|
58 |
+
Tip:
|
59 |
+
|
60 |
+
- do_sample=True → random outputs for creativity
|
61 |
+
|
62 |
+
- top_k and top_p → control sampling probability
|
63 |
+
|
64 |
+
- temperature → higher value = more creative output
|
65 |
+
|
66 |
+
## 4️⃣ Test Text Generation
|
67 |
+
Use your function with any prompt:
|
68 |
+
|
69 |
+
```python
|
70 |
+
prompt = "Hello, I am training a mini GPT model"
|
71 |
+
generated_text = generate_text(prompt, max_length=50)
|
72 |
+
|
73 |
+
print("\n📝 Generated text:")
|
74 |
+
print(generated_text)
|
75 |
+
```
|
76 |
+
Example output:
|
77 |
+
|
78 |
+
```css
|
79 |
+
Hello, I am training a mini GPT model to generate simple sentences about Python, deep learning, and AI projects.
|
80 |
+
```
|
81 |
+
✅ Summary
|
82 |
+
- Load the tokenizer and model from the safetensors folder.
|
83 |
+
|
84 |
+
- Use generate with proper sampling parameters for creative text.
|
85 |
+
|
86 |
+
- Decode the output to get readable text.
|
87 |
+
|
88 |
+
- You can experiment with prompt, max_length, top_k, top_p, and temperature to control text generation.
|
89 |
+
|
90 |
+
- By following this MDX guide, you can easily load any trained Mini-GPT model and generate text interactively.
|