File size: 8,783 Bytes
6fc6ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# transformer_mini_addition.py
# Train a tiny Transformer encoder-decoder on a toy task: "a + b =" -> "c"
# Example: input tokens ["3","+","5","="] -> output tokens ["8"]
# Run: python transformer_mini_addition.py
import math
import random
from typing import List, Tuple
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# -----------------------
# Config
# -----------------------
VOCAB = ["0","1","2","3","4","5","6","7","8","9","+","=","<pad>","<s>","</s>"]
PAD, BOS, EOS = VOCAB.index("<pad>"), VOCAB.index("<s>"), VOCAB.index("</s>")
TOK2ID = {t:i for i,t in enumerate(VOCAB)}
ID2TOK = {i:t for t,i in TOK2ID.items()}
MAX_IN_LEN = 4 # "d + d =" -> 4 tokens
MAX_OUT_LEN = 3 # could be 1 or 2 digits + EOS
EMB_DIM = 128
FF_DIM = 256
N_HEAD = 4
N_LAYERS = 2
DROPOUT = 0.1
BATCH_SIZE = 128
STEPS = 1500 # keep small for a mini training run
LR = 3e-4
WARMUP = 100
SAVE_PATH = "mini_transformer_addition.pt"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(42)
random.seed(42)
# -----------------------
# Data: generate on-the-fly mini dataset
# -----------------------
def encode(seq: List[str], max_len: int) -> List[int]:
ids = [TOK2ID[s] for s in seq]
if len(ids) < max_len:
ids += [PAD]*(max_len-len(ids))
return ids[:max_len]
def sample_pair() -> Tuple[List[int], List[int]]:
a, b = random.randint(0,9), random.randint(0,9)
c = a + b
inp = [str(a), "+", str(b), "="] # length 4
out_tokens = list(str(c)) # "0".."18"
tgt = [BOS] + [TOK2ID[t] for t in out_tokens] + [EOS] # BOS ... EOS
# pad to MAX_OUT_LEN + 2 (BOS/EOS)
max_len = MAX_OUT_LEN + 2
if len(tgt) < max_len:
tgt += [PAD] * (max_len - len(tgt))
return encode(inp, MAX_IN_LEN), tgt
class MiniAddDataset(Dataset):
def __init__(self, size=5000):
self.size = size
def __len__(self): return self.size
def __getitem__(self, idx):
src, tgt = sample_pair()
return torch.tensor(src), torch.tensor(tgt)
train_ds = MiniAddDataset(size=8000)
val_ds = MiniAddDataset(size=500)
train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=BATCH_SIZE)
# -----------------------
# Model
# -----------------------
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=64):
super().__init__()
pe = torch.zeros(max_len, d_model)
pos = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))
pe[:, 0::2] = torch.sin(pos * div)
pe[:, 1::2] = torch.cos(pos * div)
self.register_buffer("pe", pe.unsqueeze(0)) # (1, max_len, d_model)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
class TinyTransformer(nn.Module):
def __init__(self, vocab_size: int):
super().__init__()
self.src_emb = nn.Embedding(vocab_size, EMB_DIM, padding_idx=PAD)
self.tgt_emb = nn.Embedding(vocab_size, EMB_DIM, padding_idx=PAD)
self.pos_enc_src = PositionalEncoding(EMB_DIM, max_len=MAX_IN_LEN+8)
self.pos_enc_tgt = PositionalEncoding(EMB_DIM, max_len=MAX_OUT_LEN+8)
encoder_layer = nn.TransformerEncoderLayer(
d_model=EMB_DIM, nhead=N_HEAD, dim_feedforward=FF_DIM, dropout=DROPOUT, batch_first=True
)
decoder_layer = nn.TransformerDecoderLayer(
d_model=EMB_DIM, nhead=N_HEAD, dim_feedforward=FF_DIM, dropout=DROPOUT, batch_first=True
)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=N_LAYERS)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=N_LAYERS)
self.lm_head = nn.Linear(EMB_DIM, vocab_size)
def make_padding_mask(self, seq, pad_idx=PAD):
# returns (batch, 1, 1, seq_len) for nn.Transformer; but with batch_first=True we can use (batch, seq_len)
return (seq == pad_idx)
def generate_square_subsequent_mask(self, sz):
# causal mask for decoder (tgt): allow attention to previous positions only
return torch.triu(torch.ones(sz, sz, device=DEVICE), diagonal=1).bool()
def forward(self, src_ids, tgt_ids):
# src_ids: (B, S) ; tgt_ids: (B, T)
src_key_padding_mask = self.make_padding_mask(src_ids) # (B,S)
tgt_key_padding_mask = self.make_padding_mask(tgt_ids) # (B,T)
tgt_mask = self.generate_square_subsequent_mask(tgt_ids.size(1))
src = self.src_emb(src_ids)
src = self.pos_enc_src(src)
memory = self.encoder(src, src_key_padding_mask=src_key_padding_mask)
tgt = self.tgt_emb(tgt_ids)
tgt = self.pos_enc_tgt(tgt)
out = self.decoder(
tgt, memory,
tgt_mask=tgt_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=src_key_padding_mask
)
logits = self.lm_head(out) # (B,T,V)
return logits
# -----------------------
# Training utils
# -----------------------
class WarmupAdam(torch.optim.Adam):
def __init__(self, params, lr, warmup_steps=1000):
super().__init__(params, lr=lr, betas=(0.9, 0.98), eps=1e-9)
self.warmup_steps = warmup_steps
self._step = 0
self._base_lr = lr
def step(self, closure=None):
self._step += 1
scale = min(self._step ** (-0.5), self._step * (self.warmup_steps ** (-1.5)))
for g in self.param_groups:
g['lr'] = self._base_lr * scale * (self.warmup_steps ** 0.5)
return super().step(closure=closure)
def shift_right(tgt):
"""
Teacher forcing: model sees BOS + y[:-1] and predicts y.
Here tgt is already [BOS, y..., EOS, PAD...]
We return inp=tgt[:, :-1], label=tgt[:, 1:]
"""
return tgt[:, :-1], tgt[:, 1:]
def accuracy_from_logits(logits, labels, pad=PAD):
# logits: (B,T,V), labels: (B,T)
preds = logits.argmax(-1)
mask = labels.ne(pad)
correct = (preds.eq(labels) & mask).sum().item()
total = mask.sum().item() + 1e-9
return correct/total
# -----------------------
# Train
# -----------------------
model = TinyTransformer(vocab_size=len(VOCAB)).to(DEVICE)
criterion = nn.CrossEntropyLoss(ignore_index=PAD)
optim = WarmupAdam(model.parameters(), lr=LR, warmup_steps=WARMUP)
def run_epoch(dl, train=True):
model.train(train)
total_loss, total_acc, n = 0.0, 0.0, 0
for src, tgt in dl:
src, tgt = src.to(DEVICE), tgt.to(DEVICE)
dec_inp, labels = shift_right(tgt)
logits = model(src, dec_inp)
loss = criterion(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
acc = accuracy_from_logits(logits, labels)
if train:
optim.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
bs = src.size(0)
total_loss += loss.item() * bs
total_acc += acc * bs
n += bs
return total_loss/n, total_acc/n
best_val = 0.0
for step in range(1, STEPS+1):
tr_loss, tr_acc = run_epoch(train_dl, train=True)
if step % 50 == 0:
val_loss, val_acc = run_epoch(val_dl, train=False)
print(f"[step {step:4d}] train loss {tr_loss:.3f} acc {tr_acc:.3f} | val loss {val_loss:.3f} acc {val_acc:.3f}")
if val_acc > best_val:
best_val = val_acc
torch.save({"model": model.state_dict()}, SAVE_PATH)
print(f"Saved best model to: {SAVE_PATH}")
# -----------------------
# Inference demo
# -----------------------
def encode_inp(a:int,b:int):
seq = [str(a), "+", str(b), "="]
return torch.tensor([encode(seq, MAX_IN_LEN)], device=DEVICE)
def greedy_decode(src_ids, max_len=MAX_OUT_LEN+2):
model.eval()
with torch.no_grad():
# Start with BOS
ys = torch.tensor([[BOS]], device=DEVICE)
for _ in range(max_len-1):
logits = model(src_ids, ys)
next_tok = logits[:, -1, :].argmax(-1, keepdim=True) # (B,1)
ys = torch.cat([ys, next_tok], dim=1)
if next_tok.item() == EOS:
break
return ys.squeeze(0).tolist()
def detok(ids: List[int]) -> str:
toks = [ID2TOK[i] for i in ids if i not in (PAD, BOS)]
out = []
for t in toks:
if t == "</s>": break
out.append(t)
return "".join(out)
# Load best (optional, already in memory)
ckpt = torch.load(SAVE_PATH, map_location=DEVICE)
model.load_state_dict(ckpt["model"])
for (a,b) in [(3,5),(9,8),(0,0),(7,2),(4,6)]:
src = encode_inp(a,b)
out_ids = greedy_decode(src)
print(f"{a}+{b} => {detok(out_ids)}")
|