File size: 8,783 Bytes
6fc6ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# transformer_mini_addition.py
# Train a tiny Transformer encoder-decoder on a toy task: "a + b =" -> "c"
# Example: input tokens ["3","+","5","="] -> output tokens ["8"]
# Run: python transformer_mini_addition.py

import math
import random
from typing import List, Tuple

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# -----------------------
# Config
# -----------------------
VOCAB = ["0","1","2","3","4","5","6","7","8","9","+","=","<pad>","<s>","</s>"]
PAD, BOS, EOS = VOCAB.index("<pad>"), VOCAB.index("<s>"), VOCAB.index("</s>")
TOK2ID = {t:i for i,t in enumerate(VOCAB)}
ID2TOK = {i:t for t,i in TOK2ID.items()}

MAX_IN_LEN = 4         # "d + d ="  -> 4 tokens
MAX_OUT_LEN = 3        # could be 1 or 2 digits + EOS
EMB_DIM = 128
FF_DIM = 256
N_HEAD = 4
N_LAYERS = 2
DROPOUT = 0.1
BATCH_SIZE = 128
STEPS = 1500           # keep small for a mini training run
LR = 3e-4
WARMUP = 100
SAVE_PATH = "mini_transformer_addition.pt"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(42)
random.seed(42)

# -----------------------
# Data: generate on-the-fly mini dataset
# -----------------------
def encode(seq: List[str], max_len: int) -> List[int]:
    ids = [TOK2ID[s] for s in seq]
    if len(ids) < max_len:
        ids += [PAD]*(max_len-len(ids))
    return ids[:max_len]

def sample_pair() -> Tuple[List[int], List[int]]:
    a, b = random.randint(0,9), random.randint(0,9)
    c = a + b
    inp = [str(a), "+", str(b), "="]                         # length 4
    out_tokens = list(str(c))                                # "0".."18"
    tgt = [BOS] + [TOK2ID[t] for t in out_tokens] + [EOS]    # BOS ... EOS
    # pad to MAX_OUT_LEN + 2 (BOS/EOS)
    max_len = MAX_OUT_LEN + 2
    if len(tgt) < max_len:
        tgt += [PAD] * (max_len - len(tgt))
    return encode(inp, MAX_IN_LEN), tgt

class MiniAddDataset(Dataset):
    def __init__(self, size=5000):
        self.size = size
    def __len__(self): return self.size
    def __getitem__(self, idx):
        src, tgt = sample_pair()
        return torch.tensor(src), torch.tensor(tgt)

train_ds = MiniAddDataset(size=8000)
val_ds   = MiniAddDataset(size=500)
train_dl = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True)
val_dl   = DataLoader(val_ds, batch_size=BATCH_SIZE)

# -----------------------
# Model
# -----------------------
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=64):
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        pos = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0)/d_model))
        pe[:, 0::2] = torch.sin(pos * div)
        pe[:, 1::2] = torch.cos(pos * div)
        self.register_buffer("pe", pe.unsqueeze(0))  # (1, max_len, d_model)
    def forward(self, x):
        return x + self.pe[:, :x.size(1), :]

class TinyTransformer(nn.Module):
    def __init__(self, vocab_size: int):
        super().__init__()
        self.src_emb = nn.Embedding(vocab_size, EMB_DIM, padding_idx=PAD)
        self.tgt_emb = nn.Embedding(vocab_size, EMB_DIM, padding_idx=PAD)
        self.pos_enc_src = PositionalEncoding(EMB_DIM, max_len=MAX_IN_LEN+8)
        self.pos_enc_tgt = PositionalEncoding(EMB_DIM, max_len=MAX_OUT_LEN+8)

        encoder_layer = nn.TransformerEncoderLayer(
            d_model=EMB_DIM, nhead=N_HEAD, dim_feedforward=FF_DIM, dropout=DROPOUT, batch_first=True
        )
        decoder_layer = nn.TransformerDecoderLayer(
            d_model=EMB_DIM, nhead=N_HEAD, dim_feedforward=FF_DIM, dropout=DROPOUT, batch_first=True
        )
        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=N_LAYERS)
        self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=N_LAYERS)
        self.lm_head = nn.Linear(EMB_DIM, vocab_size)

    def make_padding_mask(self, seq, pad_idx=PAD):
        # returns (batch, 1, 1, seq_len) for nn.Transformer; but with batch_first=True we can use (batch, seq_len)
        return (seq == pad_idx)

    def generate_square_subsequent_mask(self, sz):
        # causal mask for decoder (tgt): allow attention to previous positions only
        return torch.triu(torch.ones(sz, sz, device=DEVICE), diagonal=1).bool()

    def forward(self, src_ids, tgt_ids):
        # src_ids: (B, S) ; tgt_ids: (B, T)
        src_key_padding_mask = self.make_padding_mask(src_ids)    # (B,S)
        tgt_key_padding_mask = self.make_padding_mask(tgt_ids)    # (B,T)
        tgt_mask = self.generate_square_subsequent_mask(tgt_ids.size(1))

        src = self.src_emb(src_ids)
        src = self.pos_enc_src(src)
        memory = self.encoder(src, src_key_padding_mask=src_key_padding_mask)

        tgt = self.tgt_emb(tgt_ids)
        tgt = self.pos_enc_tgt(tgt)
        out = self.decoder(
            tgt, memory,
            tgt_mask=tgt_mask,
            tgt_key_padding_mask=tgt_key_padding_mask,
            memory_key_padding_mask=src_key_padding_mask
        )
        logits = self.lm_head(out)  # (B,T,V)
        return logits

# -----------------------
# Training utils
# -----------------------
class WarmupAdam(torch.optim.Adam):
    def __init__(self, params, lr, warmup_steps=1000):
        super().__init__(params, lr=lr, betas=(0.9, 0.98), eps=1e-9)
        self.warmup_steps = warmup_steps
        self._step = 0
        self._base_lr = lr
    def step(self, closure=None):
        self._step += 1
        scale = min(self._step ** (-0.5), self._step * (self.warmup_steps ** (-1.5)))
        for g in self.param_groups:
            g['lr'] = self._base_lr * scale * (self.warmup_steps ** 0.5)
        return super().step(closure=closure)

def shift_right(tgt):
    """
    Teacher forcing: model sees BOS + y[:-1] and predicts y.
    Here tgt is already [BOS, y..., EOS, PAD...]
    We return inp=tgt[:, :-1], label=tgt[:, 1:]
    """
    return tgt[:, :-1], tgt[:, 1:]

def accuracy_from_logits(logits, labels, pad=PAD):
    # logits: (B,T,V), labels: (B,T)
    preds = logits.argmax(-1)
    mask = labels.ne(pad)
    correct = (preds.eq(labels) & mask).sum().item()
    total = mask.sum().item() + 1e-9
    return correct/total

# -----------------------
# Train
# -----------------------
model = TinyTransformer(vocab_size=len(VOCAB)).to(DEVICE)
criterion = nn.CrossEntropyLoss(ignore_index=PAD)
optim = WarmupAdam(model.parameters(), lr=LR, warmup_steps=WARMUP)

def run_epoch(dl, train=True):
    model.train(train)
    total_loss, total_acc, n = 0.0, 0.0, 0
    for src, tgt in dl:
        src, tgt = src.to(DEVICE), tgt.to(DEVICE)
        dec_inp, labels = shift_right(tgt)
        logits = model(src, dec_inp)
        loss = criterion(logits.reshape(-1, logits.size(-1)), labels.reshape(-1))
        acc = accuracy_from_logits(logits, labels)

        if train:
            optim.zero_grad(set_to_none=True)
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optim.step()

        bs = src.size(0)
        total_loss += loss.item() * bs
        total_acc += acc * bs
        n += bs
    return total_loss/n, total_acc/n

best_val = 0.0
for step in range(1, STEPS+1):
    tr_loss, tr_acc = run_epoch(train_dl, train=True)
    if step % 50 == 0:
        val_loss, val_acc = run_epoch(val_dl, train=False)
        print(f"[step {step:4d}] train loss {tr_loss:.3f} acc {tr_acc:.3f} | val loss {val_loss:.3f} acc {val_acc:.3f}")
        if val_acc > best_val:
            best_val = val_acc
            torch.save({"model": model.state_dict()}, SAVE_PATH)

print(f"Saved best model to: {SAVE_PATH}")

# -----------------------
# Inference demo
# -----------------------
def encode_inp(a:int,b:int):
    seq = [str(a), "+", str(b), "="]
    return torch.tensor([encode(seq, MAX_IN_LEN)], device=DEVICE)

def greedy_decode(src_ids, max_len=MAX_OUT_LEN+2):
    model.eval()
    with torch.no_grad():
        # Start with BOS
        ys = torch.tensor([[BOS]], device=DEVICE)
        for _ in range(max_len-1):
            logits = model(src_ids, ys)
            next_tok = logits[:, -1, :].argmax(-1, keepdim=True)  # (B,1)
            ys = torch.cat([ys, next_tok], dim=1)
            if next_tok.item() == EOS:
                break
    return ys.squeeze(0).tolist()

def detok(ids: List[int]) -> str:
    toks = [ID2TOK[i] for i in ids if i not in (PAD, BOS)]
    out = []
    for t in toks:
        if t == "</s>": break
        out.append(t)
    return "".join(out)

# Load best (optional, already in memory)
ckpt = torch.load(SAVE_PATH, map_location=DEVICE)
model.load_state_dict(ckpt["model"])

for (a,b) in [(3,5),(9,8),(0,0),(7,2),(4,6)]:
    src = encode_inp(a,b)
    out_ids = greedy_decode(src)
    print(f"{a}+{b} => {detok(out_ids)}")