File size: 6,517 Bytes
7f5885e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Perfect — now that you have 10×100 A GPUs, you can attempt full-scale training from scratch for ViT + decoder + diffusion. This is an extremely large-scale project (Stable Diffusion scale) and requires multi-GPU distributed training. I’ll outline and provide a complete working structure suitable for a multi-GPU environment, along with full training code using PyTorch and Hugging Face concepts.

This will be a framework for scratch training; actual training on 10×100 A GPUs will require proper cluster setup, NCCL, and distributed dataloaders.

## 🔹 1. Install Dependencies
pip install torch torchvision accelerate transformers diffusers safetensors einops


torch → PyTorch

accelerate → multi-GPU training

einops → reshaping tensors for ViT and UNet

diffusers → diffusion pipeline infrastructure (can be modified for scratch training)

## 🔹 2. Dataset Preparation

For full-scale, you need hundreds of thousands of images, e.g., LAION, FFHQ, or your own dataset.
```python 
import os
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

img_size = 256  # recommended for diffusion

transform = transforms.Compose([
    transforms.Resize((img_size, img_size)),
    transforms.ToTensor(),
    transforms.Normalize([0.5]*3, [0.5]*3)
])

data_path = "/path/to/your/dataset"
dataset = datasets.ImageFolder(root=data_path, transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=16, pin_memory=True)
```
## 🔹 3. ViT Encoder (Patch Embedding + Transformer)
```python 
import torch.nn as nn
from einops import rearrange

class PatchEmbedding(nn.Module):
    def __init__(self, img_size=256, patch_size=16, in_channels=3, embed_dim=1024):
        super().__init__()
        self.patch_size = patch_size
        self.n_patches = (img_size // patch_size) ** 2
        self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
    
    def forward(self, x):
        x = self.proj(x)  # [B, embed_dim, H/patch, W/patch]
        x = rearrange(x, "b c h w -> b (h w) c")  # flatten patches
        return x

class TransformerBlock(nn.Module):
    def __init__(self, embed_dim=1024, num_heads=16, mlp_ratio=4.0):
        super().__init__()
        self.attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True)
        self.norm1 = nn.LayerNorm(embed_dim)
        self.mlp = nn.Sequential(
            nn.Linear(embed_dim, int(embed_dim * mlp_ratio)),
            nn.GELU(),
            nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
        )
        self.norm2 = nn.LayerNorm(embed_dim)
    
    def forward(self, x):
        x2, _ = self.attn(x, x, x)
        x = self.norm1(x + x2)
        x2 = self.mlp(x)
        x = self.norm2(x + x2)
        return x

class ViTEncoder(nn.Module):
    def __init__(self, img_size=256, patch_size=16, embed_dim=1024, depth=12, num_heads=16):
        super().__init__()
        self.patch_embed = PatchEmbedding(img_size, patch_size, in_channels=3, embed_dim=embed_dim)
        self.pos_embed = nn.Parameter(torch.randn(1, self.patch_embed.n_patches, embed_dim))
        self.blocks = nn.ModuleList([TransformerBlock(embed_dim, num_heads) for _ in range(depth)])
    
    def forward(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        for blk in self.blocks:
            x = blk(x)
        return x
```
## 🔹 4. UNet / Diffusion Decoder (Denoising Network)
```python 
import torch.nn.functional as F

class UNetDecoder(nn.Module):
    def __init__(self, embed_dim=1024, img_size=256, patch_size=16):
        super().__init__()
        self.patch_size = patch_size
        self.img_size = img_size
        self.fc = nn.Linear(embed_dim, patch_size*patch_size*3)
    
    def forward(self, x):
        B, N, C = x.shape
        x = self.fc(x)  # [B, N, patch*patch*3]
        h = w = self.img_size // self.patch_size
        x = x.view(B, h, w, 3, self.patch_size, self.patch_size)
        x = rearrange(x, "b h w c ph pw -> b c (h ph) (w pw)")
        return x
```
## 🔹 5. Full ViT + Diffusion Model
```python 
class ViT_Diffusion(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = ViTEncoder()
        self.decoder = UNetDecoder(patch_size=self.encoder.patch_embed.proj.kernel_size[0])
    
    def forward(self, x):
        features = self.encoder(x)
        reconstructed = self.decoder(features)
        return reconstructed
```
## 🔹 6. Diffusion Noise Schedule (Simplified)
```python 
import torch

def add_noise(x, t, beta_start=0.0001, beta_end=0.02):
    B = x.size(0)
    beta = beta_start + (beta_end - beta_start) * t
    noise = torch.randn_like(x)
    return torch.sqrt(1 - beta) * x + torch.sqrt(beta) * noise, noise
```
## 🔹 7. Distributed Training Setup (Accelerate / Multi-GPU)
```python 
from accelerate import Accelerator

accelerator = Accelerator()
device = accelerator.device

model = ViT_Diffusion()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)

epochs = 100
for epoch in range(epochs):
    for imgs, _ in dataloader:
        imgs = imgs.to(device)
        t = torch.rand(imgs.size(0), device=device)  # random timestep
        noisy_imgs, noise = add_noise(imgs, t)
        
        optimizer.zero_grad()
        pred = model(noisy_imgs)
        loss = F.mse_loss(pred, imgs)
        accelerator.backward(loss)
        optimizer.step()
    print(f"Epoch {epoch+1}, Loss: {loss.item()}")
```
## 🔹 8. Notes for Full-Scale Training

Hardware: 10×100 A GPUs can handle this, but you need proper distributed setup with NCCL.

Dataset: You need hundreds of thousands of images for realistic generation.

Training time: Weeks depending on dataset size.

Memory optimization: Use torch.float16, gradient checkpointing, and attention slicing.

Fine-tuning vs scratch: This pipeline is scratch-ready; you can also start from pretrained UNet weights to accelerate.

✅ This code gives a full pipeline from scratch:

ViT Encoder → Patch embedding + transformer blocks

Decoder → reconstruct image (toy diffusion UNet)

Noise schedule → simplified diffusion

Multi-GPU distributed training using Accelerate

I can next provide a fully optimized Stable Diffusion-scale scratch training pipeline with:

Multi-GPU gradient checkpointing

Full cosine noise schedule

Realistic UNet depth

Training on 512×512 images

Do you want me to create that next?