Update README.md
Browse files
README.md
CHANGED
|
@@ -38,13 +38,23 @@ This model can be easily loaded using the `AutoModelForCausalLM` functionality:
|
|
| 38 |
|
| 39 |
```python
|
| 40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 41 |
-
|
| 42 |
-
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono")
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
| 49 |
```
|
| 50 |
|
|
|
|
| 38 |
|
| 39 |
```python
|
| 40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 41 |
+
from peft import PeftConfig, PeftModel
|
|
|
|
| 42 |
|
| 43 |
+
model_name = "ammarnasr/codegen-350M-mono-swift"
|
| 44 |
+
peft_config = PeftConfig.from_pretrained(model_name)
|
| 45 |
|
| 46 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_config.base_model_name_or_path)
|
| 47 |
+
|
| 48 |
+
model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path)
|
| 49 |
+
model = PeftModel.from_pretrained(model, model_name)
|
| 50 |
+
|
| 51 |
+
model.print_trainable_parameters()
|
| 52 |
+
|
| 53 |
+
text = "func hello_world() {"
|
| 54 |
+
|
| 55 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
| 56 |
+
generated_ids = model.generate(input_ids=input_ids, max_length=100)
|
| 57 |
+
print('Generated: \n')
|
| 58 |
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
| 59 |
```
|
| 60 |
|