handler
Browse files- handler.py +3 -2
handler.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
-
from peft import PeftConfig
|
|
|
|
| 3 |
import torch.cuda
|
| 4 |
from typing import Any, Dict
|
| 5 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -7,7 +8,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 7 |
class EndpointHandler():
|
| 8 |
def __init__(self, path=""):
|
| 9 |
config = PeftConfig.from_pretrained(path)
|
| 10 |
-
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path
|
| 11 |
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 12 |
# Load the Lora model
|
| 13 |
self.model = PeftModel.from_pretrained(model, path)
|
|
|
|
| 1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 2 |
+
from peft import PeftConfig
|
| 3 |
+
from peft import PeftModel
|
| 4 |
import torch.cuda
|
| 5 |
from typing import Any, Dict
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 8 |
class EndpointHandler():
|
| 9 |
def __init__(self, path=""):
|
| 10 |
config = PeftConfig.from_pretrained(path)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
| 12 |
self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
| 13 |
# Load the Lora model
|
| 14 |
self.model = PeftModel.from_pretrained(model, path)
|