Upload LlavaLlamaForCausalLM
Browse files- clip_encoder.py +102 -0
- config.json +47 -0
- constants.py +27 -0
- generation_config.json +10 -0
- llava_arch.py +368 -0
- llava_llama.py +161 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +693 -0
- multimodal_encoder.py +25 -0
- multimodal_projector.py +64 -0
- utils.py +220 -0
clip_encoder.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch
|
| 16 |
+
import torch.nn as nn
|
| 17 |
+
|
| 18 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class CLIPVisionTower(nn.Module):
|
| 22 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
| 23 |
+
super().__init__()
|
| 24 |
+
|
| 25 |
+
self.is_loaded = False
|
| 26 |
+
|
| 27 |
+
self.vision_tower_name = vision_tower
|
| 28 |
+
self.select_layer = args.mm_vision_select_layer
|
| 29 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
| 30 |
+
|
| 31 |
+
if not delay_load:
|
| 32 |
+
self.load_model()
|
| 33 |
+
elif getattr(args, 'unfreeze_mm_vision_tower', False):
|
| 34 |
+
self.load_model()
|
| 35 |
+
else:
|
| 36 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
| 37 |
+
|
| 38 |
+
def load_model(self, device_map=None):
|
| 39 |
+
if self.is_loaded:
|
| 40 |
+
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
|
| 41 |
+
return
|
| 42 |
+
|
| 43 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
| 44 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
|
| 45 |
+
self.vision_tower.requires_grad_(False)
|
| 46 |
+
|
| 47 |
+
self.is_loaded = True
|
| 48 |
+
|
| 49 |
+
def feature_select(self, image_forward_outs):
|
| 50 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
| 51 |
+
if self.select_feature == 'patch':
|
| 52 |
+
image_features = image_features[:, 1:]
|
| 53 |
+
elif self.select_feature == 'cls_patch':
|
| 54 |
+
image_features = image_features
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
| 57 |
+
return image_features
|
| 58 |
+
|
| 59 |
+
@torch.no_grad()
|
| 60 |
+
def forward(self, images):
|
| 61 |
+
if type(images) is list:
|
| 62 |
+
image_features = []
|
| 63 |
+
for image in images:
|
| 64 |
+
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
| 65 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
| 66 |
+
image_features.append(image_feature)
|
| 67 |
+
else:
|
| 68 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
| 69 |
+
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
| 70 |
+
|
| 71 |
+
return image_features
|
| 72 |
+
|
| 73 |
+
@property
|
| 74 |
+
def dummy_feature(self):
|
| 75 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
| 76 |
+
|
| 77 |
+
@property
|
| 78 |
+
def dtype(self):
|
| 79 |
+
return self.vision_tower.dtype
|
| 80 |
+
|
| 81 |
+
@property
|
| 82 |
+
def device(self):
|
| 83 |
+
return self.vision_tower.device
|
| 84 |
+
|
| 85 |
+
@property
|
| 86 |
+
def config(self):
|
| 87 |
+
if self.is_loaded:
|
| 88 |
+
return self.vision_tower.config
|
| 89 |
+
else:
|
| 90 |
+
return self.cfg_only
|
| 91 |
+
|
| 92 |
+
@property
|
| 93 |
+
def hidden_size(self):
|
| 94 |
+
return self.config.hidden_size
|
| 95 |
+
|
| 96 |
+
@property
|
| 97 |
+
def num_patches_per_side(self):
|
| 98 |
+
return self.config.image_size // self.config.patch_size
|
| 99 |
+
|
| 100 |
+
@property
|
| 101 |
+
def num_patches(self):
|
| 102 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
config.json
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "meta-llama/Llama-2-7b-chat-hf",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlavaLlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "llava_llama.LlavaConfig",
|
| 10 |
+
"AutoModelForVisualQuestionAnswering": "llava_llama.LlavaLlamaForCausalLM"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"eos_token_id": 2,
|
| 14 |
+
"freeze_mm_mlp_adapter": false,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 4096,
|
| 17 |
+
"image_aspect_ratio": "pad",
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"intermediate_size": 11008,
|
| 20 |
+
"max_position_embeddings": 4096,
|
| 21 |
+
"mm_hidden_size": 1024,
|
| 22 |
+
"mm_patch_merge_type": "flat",
|
| 23 |
+
"mm_projector_lr": 2e-05,
|
| 24 |
+
"mm_projector_type": "mlp2x_gelu",
|
| 25 |
+
"mm_use_im_patch_token": false,
|
| 26 |
+
"mm_use_im_start_end": false,
|
| 27 |
+
"mm_vision_select_feature": "patch",
|
| 28 |
+
"mm_vision_select_layer": -2,
|
| 29 |
+
"mm_vision_tower": "openai/clip-vit-large-patch14-336",
|
| 30 |
+
"model_type": "llava_llama",
|
| 31 |
+
"num_attention_heads": 32,
|
| 32 |
+
"num_hidden_layers": 32,
|
| 33 |
+
"num_key_value_heads": 32,
|
| 34 |
+
"pretraining_tp": 1,
|
| 35 |
+
"rms_norm_eps": 1e-05,
|
| 36 |
+
"rope_scaling": null,
|
| 37 |
+
"rope_theta": 10000.0,
|
| 38 |
+
"tie_word_embeddings": false,
|
| 39 |
+
"tokenizer_model_max_length": 2048,
|
| 40 |
+
"tokenizer_padding_side": "right",
|
| 41 |
+
"torch_dtype": "float16",
|
| 42 |
+
"transformers_version": "4.37.2",
|
| 43 |
+
"tune_mm_mlp_adapter": false,
|
| 44 |
+
"use_cache": true,
|
| 45 |
+
"use_mm_proj": true,
|
| 46 |
+
"vocab_size": 32000
|
| 47 |
+
}
|
constants.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
| 16 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
| 17 |
+
|
| 18 |
+
LOGDIR = "."
|
| 19 |
+
|
| 20 |
+
# Model Constants
|
| 21 |
+
IGNORE_INDEX = -100
|
| 22 |
+
IMAGE_TOKEN_INDEX = -200
|
| 23 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
| 24 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
| 25 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
| 26 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
| 27 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"temperature": 0.6,
|
| 8 |
+
"top_p": 0.9,
|
| 9 |
+
"transformers_version": "4.37.2"
|
| 10 |
+
}
|
llava_arch.py
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from abc import ABC, abstractmethod
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from .multimodal_encoder import build_vision_tower
|
| 22 |
+
from .multimodal_projector import build_vision_projector
|
| 23 |
+
|
| 24 |
+
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 25 |
+
|
| 26 |
+
from .utils import get_anyres_image_grid_shape
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class LlavaMetaModel:
|
| 30 |
+
|
| 31 |
+
def __init__(self, config):
|
| 32 |
+
super(LlavaMetaModel, self).__init__(config)
|
| 33 |
+
|
| 34 |
+
if hasattr(config, "mm_vision_tower"):
|
| 35 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
| 36 |
+
self.mm_projector = build_vision_projector(config)
|
| 37 |
+
|
| 38 |
+
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
|
| 39 |
+
self.image_newline = nn.Parameter(
|
| 40 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def get_vision_tower(self):
|
| 44 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
| 45 |
+
if type(vision_tower) is list:
|
| 46 |
+
vision_tower = vision_tower[0]
|
| 47 |
+
return vision_tower
|
| 48 |
+
|
| 49 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
| 50 |
+
vision_tower = model_args.vision_tower
|
| 51 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
| 52 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
| 53 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
| 54 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
| 55 |
+
|
| 56 |
+
self.config.mm_vision_tower = vision_tower
|
| 57 |
+
|
| 58 |
+
if self.get_vision_tower() is None:
|
| 59 |
+
vision_tower = build_vision_tower(model_args)
|
| 60 |
+
|
| 61 |
+
if fsdp is not None and len(fsdp) > 0:
|
| 62 |
+
self.vision_tower = [vision_tower]
|
| 63 |
+
else:
|
| 64 |
+
self.vision_tower = vision_tower
|
| 65 |
+
else:
|
| 66 |
+
if fsdp is not None and len(fsdp) > 0:
|
| 67 |
+
vision_tower = self.vision_tower[0]
|
| 68 |
+
else:
|
| 69 |
+
vision_tower = self.vision_tower
|
| 70 |
+
vision_tower.load_model()
|
| 71 |
+
|
| 72 |
+
self.config.use_mm_proj = True
|
| 73 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
| 74 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
| 75 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
| 76 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
| 77 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
| 78 |
+
|
| 79 |
+
if getattr(self, 'mm_projector', None) is None:
|
| 80 |
+
self.mm_projector = build_vision_projector(self.config)
|
| 81 |
+
|
| 82 |
+
if 'unpad' in mm_patch_merge_type:
|
| 83 |
+
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
| 84 |
+
self.image_newline = nn.Parameter(
|
| 85 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
| 86 |
+
)
|
| 87 |
+
else:
|
| 88 |
+
# In case it is frozen by LoRA
|
| 89 |
+
for p in self.mm_projector.parameters():
|
| 90 |
+
p.requires_grad = True
|
| 91 |
+
|
| 92 |
+
if pretrain_mm_mlp_adapter is not None:
|
| 93 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
| 94 |
+
def get_w(weights, keyword):
|
| 95 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
| 96 |
+
|
| 97 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def unpad_image(tensor, original_size):
|
| 101 |
+
"""
|
| 102 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
| 106 |
+
original_size (tuple): The original size of the image (height, width).
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
torch.Tensor: The unpadded image tensor.
|
| 110 |
+
"""
|
| 111 |
+
original_width, original_height = original_size
|
| 112 |
+
current_height, current_width = tensor.shape[1:]
|
| 113 |
+
|
| 114 |
+
original_aspect_ratio = original_width / original_height
|
| 115 |
+
current_aspect_ratio = current_width / current_height
|
| 116 |
+
|
| 117 |
+
if original_aspect_ratio > current_aspect_ratio:
|
| 118 |
+
scale_factor = current_width / original_width
|
| 119 |
+
new_height = int(original_height * scale_factor)
|
| 120 |
+
padding = (current_height - new_height) // 2
|
| 121 |
+
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
| 122 |
+
else:
|
| 123 |
+
scale_factor = current_height / original_height
|
| 124 |
+
new_width = int(original_width * scale_factor)
|
| 125 |
+
padding = (current_width - new_width) // 2
|
| 126 |
+
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
| 127 |
+
|
| 128 |
+
return unpadded_tensor
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class LlavaMetaForCausalLM(ABC):
|
| 132 |
+
|
| 133 |
+
@abstractmethod
|
| 134 |
+
def get_model(self):
|
| 135 |
+
pass
|
| 136 |
+
|
| 137 |
+
def get_vision_tower(self):
|
| 138 |
+
return self.get_model().get_vision_tower()
|
| 139 |
+
|
| 140 |
+
def encode_images(self, images):
|
| 141 |
+
image_features = self.get_model().get_vision_tower()(images)
|
| 142 |
+
image_features = self.get_model().mm_projector(image_features)
|
| 143 |
+
return image_features
|
| 144 |
+
|
| 145 |
+
def prepare_inputs_labels_for_multimodal(
|
| 146 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
| 147 |
+
images, image_sizes=None
|
| 148 |
+
):
|
| 149 |
+
vision_tower = self.get_vision_tower()
|
| 150 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
| 151 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
| 152 |
+
|
| 153 |
+
if type(images) is list or images.ndim == 5:
|
| 154 |
+
if type(images) is list:
|
| 155 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
| 156 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
| 157 |
+
image_features = self.encode_images(concat_images)
|
| 158 |
+
split_sizes = [image.shape[0] for image in images]
|
| 159 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
| 160 |
+
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
|
| 161 |
+
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
|
| 162 |
+
if mm_patch_merge_type == 'flat':
|
| 163 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
| 164 |
+
elif mm_patch_merge_type.startswith('spatial'):
|
| 165 |
+
new_image_features = []
|
| 166 |
+
for image_idx, image_feature in enumerate(image_features):
|
| 167 |
+
if image_feature.shape[0] > 1:
|
| 168 |
+
base_image_feature = image_feature[0]
|
| 169 |
+
image_feature = image_feature[1:]
|
| 170 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
| 171 |
+
assert height * width == base_image_feature.shape[0]
|
| 172 |
+
if image_aspect_ratio == 'anyres':
|
| 173 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
|
| 174 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
| 175 |
+
else:
|
| 176 |
+
raise NotImplementedError
|
| 177 |
+
if 'unpad' in mm_patch_merge_type:
|
| 178 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
| 179 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
| 180 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
| 181 |
+
image_feature = torch.cat((
|
| 182 |
+
image_feature,
|
| 183 |
+
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
| 184 |
+
), dim=-1)
|
| 185 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
| 186 |
+
else:
|
| 187 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
| 188 |
+
image_feature = image_feature.flatten(0, 3)
|
| 189 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
| 190 |
+
else:
|
| 191 |
+
image_feature = image_feature[0]
|
| 192 |
+
if 'unpad' in mm_patch_merge_type:
|
| 193 |
+
image_feature = torch.cat((
|
| 194 |
+
image_feature,
|
| 195 |
+
self.model.image_newline[None].to(image_feature.device)
|
| 196 |
+
), dim=0)
|
| 197 |
+
new_image_features.append(image_feature)
|
| 198 |
+
image_features = new_image_features
|
| 199 |
+
else:
|
| 200 |
+
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
| 201 |
+
else:
|
| 202 |
+
image_features = self.encode_images(images)
|
| 203 |
+
|
| 204 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
| 205 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
| 206 |
+
raise NotImplementedError
|
| 207 |
+
|
| 208 |
+
# Let's just add dummy tensors if they do not exist,
|
| 209 |
+
# it is a headache to deal with None all the time.
|
| 210 |
+
# But it is not ideal, and if you have a better idea,
|
| 211 |
+
# please open an issue / submit a PR, thanks.
|
| 212 |
+
_labels = labels
|
| 213 |
+
_position_ids = position_ids
|
| 214 |
+
_attention_mask = attention_mask
|
| 215 |
+
if attention_mask is None:
|
| 216 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
| 217 |
+
else:
|
| 218 |
+
attention_mask = attention_mask.bool()
|
| 219 |
+
if position_ids is None:
|
| 220 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
| 221 |
+
if labels is None:
|
| 222 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
| 223 |
+
|
| 224 |
+
# remove the padding using attention_mask -- FIXME
|
| 225 |
+
_input_ids = input_ids
|
| 226 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
| 227 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
| 228 |
+
|
| 229 |
+
new_input_embeds = []
|
| 230 |
+
new_labels = []
|
| 231 |
+
cur_image_idx = 0
|
| 232 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
| 233 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
| 234 |
+
if num_images == 0:
|
| 235 |
+
cur_image_features = image_features[cur_image_idx]
|
| 236 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
| 237 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
| 238 |
+
new_input_embeds.append(cur_input_embeds)
|
| 239 |
+
new_labels.append(labels[batch_idx])
|
| 240 |
+
cur_image_idx += 1
|
| 241 |
+
continue
|
| 242 |
+
|
| 243 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
| 244 |
+
cur_input_ids_noim = []
|
| 245 |
+
cur_labels = labels[batch_idx]
|
| 246 |
+
cur_labels_noim = []
|
| 247 |
+
for i in range(len(image_token_indices) - 1):
|
| 248 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 249 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
| 250 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
| 251 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
| 252 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
| 253 |
+
cur_new_input_embeds = []
|
| 254 |
+
cur_new_labels = []
|
| 255 |
+
|
| 256 |
+
for i in range(num_images + 1):
|
| 257 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
| 258 |
+
cur_new_labels.append(cur_labels_noim[i])
|
| 259 |
+
if i < num_images:
|
| 260 |
+
cur_image_features = image_features[cur_image_idx]
|
| 261 |
+
cur_image_idx += 1
|
| 262 |
+
cur_new_input_embeds.append(cur_image_features)
|
| 263 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
| 264 |
+
|
| 265 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
| 266 |
+
|
| 267 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
| 268 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
| 269 |
+
|
| 270 |
+
new_input_embeds.append(cur_new_input_embeds)
|
| 271 |
+
new_labels.append(cur_new_labels)
|
| 272 |
+
|
| 273 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
| 274 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
| 275 |
+
if tokenizer_model_max_length is not None:
|
| 276 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
| 277 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
| 278 |
+
|
| 279 |
+
# Combine them
|
| 280 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
| 281 |
+
batch_size = len(new_input_embeds)
|
| 282 |
+
|
| 283 |
+
new_input_embeds_padded = []
|
| 284 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
| 285 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
| 286 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
| 287 |
+
|
| 288 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
| 289 |
+
cur_len = cur_new_embed.shape[0]
|
| 290 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
| 291 |
+
new_input_embeds_padded.append(torch.cat((
|
| 292 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
| 293 |
+
cur_new_embed
|
| 294 |
+
), dim=0))
|
| 295 |
+
if cur_len > 0:
|
| 296 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
| 297 |
+
attention_mask[i, -cur_len:] = True
|
| 298 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 299 |
+
else:
|
| 300 |
+
new_input_embeds_padded.append(torch.cat((
|
| 301 |
+
cur_new_embed,
|
| 302 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
| 303 |
+
), dim=0))
|
| 304 |
+
if cur_len > 0:
|
| 305 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
| 306 |
+
attention_mask[i, :cur_len] = True
|
| 307 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
| 308 |
+
|
| 309 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
| 310 |
+
|
| 311 |
+
if _labels is None:
|
| 312 |
+
new_labels = None
|
| 313 |
+
else:
|
| 314 |
+
new_labels = new_labels_padded
|
| 315 |
+
|
| 316 |
+
if _attention_mask is None:
|
| 317 |
+
attention_mask = None
|
| 318 |
+
else:
|
| 319 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
| 320 |
+
|
| 321 |
+
if _position_ids is None:
|
| 322 |
+
position_ids = None
|
| 323 |
+
|
| 324 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
| 325 |
+
|
| 326 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
| 327 |
+
if model_args.mm_use_im_patch_token:
|
| 328 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
| 329 |
+
self.resize_token_embeddings(len(tokenizer))
|
| 330 |
+
|
| 331 |
+
if model_args.mm_use_im_start_end:
|
| 332 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
| 333 |
+
self.resize_token_embeddings(len(tokenizer))
|
| 334 |
+
|
| 335 |
+
if num_new_tokens > 0:
|
| 336 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
| 337 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
| 338 |
+
|
| 339 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
| 340 |
+
dim=0, keepdim=True)
|
| 341 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
| 342 |
+
dim=0, keepdim=True)
|
| 343 |
+
|
| 344 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
| 345 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
| 346 |
+
|
| 347 |
+
if model_args.tune_mm_mlp_adapter:
|
| 348 |
+
for p in self.get_input_embeddings().parameters():
|
| 349 |
+
p.requires_grad = True
|
| 350 |
+
for p in self.get_output_embeddings().parameters():
|
| 351 |
+
p.requires_grad = False
|
| 352 |
+
|
| 353 |
+
if model_args.pretrain_mm_mlp_adapter:
|
| 354 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
| 355 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
| 356 |
+
assert num_new_tokens == 2
|
| 357 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
| 358 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
| 359 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
| 360 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
| 361 |
+
else:
|
| 362 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
| 363 |
+
elif model_args.mm_use_im_patch_token:
|
| 364 |
+
if model_args.tune_mm_mlp_adapter:
|
| 365 |
+
for p in self.get_input_embeddings().parameters():
|
| 366 |
+
p.requires_grad = False
|
| 367 |
+
for p in self.get_output_embeddings().parameters():
|
| 368 |
+
p.requires_grad = False
|
llava_llama.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
| 22 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM
|
| 23 |
+
|
| 24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 25 |
+
from transformers.generation.utils import GenerateOutput
|
| 26 |
+
|
| 27 |
+
from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class LlavaConfig(LlamaConfig):
|
| 31 |
+
model_type = "llava_llama"
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
| 35 |
+
config_class = LlavaConfig
|
| 36 |
+
|
| 37 |
+
def __init__(self, config: LlamaConfig):
|
| 38 |
+
super(LlavaLlamaModel, self).__init__(config)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
| 42 |
+
config_class = LlavaConfig
|
| 43 |
+
|
| 44 |
+
def __init__(self, config):
|
| 45 |
+
super(LlamaForCausalLM, self).__init__(config)
|
| 46 |
+
self.model = LlavaLlamaModel(config)
|
| 47 |
+
self.pretraining_tp = config.pretraining_tp
|
| 48 |
+
self.vocab_size = config.vocab_size
|
| 49 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 50 |
+
|
| 51 |
+
# Initialize weights and apply final processing
|
| 52 |
+
self.post_init()
|
| 53 |
+
|
| 54 |
+
def get_model(self):
|
| 55 |
+
return self.model
|
| 56 |
+
|
| 57 |
+
def forward(
|
| 58 |
+
self,
|
| 59 |
+
input_ids: torch.LongTensor = None,
|
| 60 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 61 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 62 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 63 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 64 |
+
labels: Optional[torch.LongTensor] = None,
|
| 65 |
+
use_cache: Optional[bool] = None,
|
| 66 |
+
output_attentions: Optional[bool] = None,
|
| 67 |
+
output_hidden_states: Optional[bool] = None,
|
| 68 |
+
images: Optional[torch.FloatTensor] = None,
|
| 69 |
+
image_sizes: Optional[List[List[int]]] = None,
|
| 70 |
+
# cache_position: Optional[torch.LongTensor] = None,
|
| 71 |
+
return_dict: Optional[bool] = None,
|
| 72 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 73 |
+
|
| 74 |
+
if inputs_embeds is None:
|
| 75 |
+
(
|
| 76 |
+
input_ids,
|
| 77 |
+
position_ids,
|
| 78 |
+
attention_mask,
|
| 79 |
+
past_key_values,
|
| 80 |
+
inputs_embeds,
|
| 81 |
+
labels
|
| 82 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 83 |
+
input_ids,
|
| 84 |
+
position_ids,
|
| 85 |
+
attention_mask,
|
| 86 |
+
past_key_values,
|
| 87 |
+
labels,
|
| 88 |
+
images,
|
| 89 |
+
image_sizes
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
return super().forward(
|
| 93 |
+
input_ids=input_ids,
|
| 94 |
+
attention_mask=attention_mask,
|
| 95 |
+
position_ids=position_ids,
|
| 96 |
+
past_key_values=past_key_values,
|
| 97 |
+
inputs_embeds=inputs_embeds,
|
| 98 |
+
labels=labels,
|
| 99 |
+
use_cache=use_cache,
|
| 100 |
+
output_attentions=output_attentions,
|
| 101 |
+
output_hidden_states=output_hidden_states,
|
| 102 |
+
# cache_position=cache_position,
|
| 103 |
+
return_dict=return_dict
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def generate(
|
| 108 |
+
self,
|
| 109 |
+
inputs: Optional[torch.Tensor] = None,
|
| 110 |
+
images: Optional[torch.Tensor] = None,
|
| 111 |
+
image_sizes: Optional[torch.Tensor] = None,
|
| 112 |
+
**kwargs,
|
| 113 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
| 114 |
+
position_ids = kwargs.pop("position_ids", None)
|
| 115 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
| 116 |
+
if "inputs_embeds" in kwargs:
|
| 117 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
| 118 |
+
|
| 119 |
+
if images is not None:
|
| 120 |
+
(
|
| 121 |
+
inputs,
|
| 122 |
+
position_ids,
|
| 123 |
+
attention_mask,
|
| 124 |
+
_,
|
| 125 |
+
inputs_embeds,
|
| 126 |
+
_
|
| 127 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
| 128 |
+
inputs,
|
| 129 |
+
position_ids,
|
| 130 |
+
attention_mask,
|
| 131 |
+
None,
|
| 132 |
+
None,
|
| 133 |
+
images,
|
| 134 |
+
image_sizes=image_sizes
|
| 135 |
+
)
|
| 136 |
+
else:
|
| 137 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
| 138 |
+
|
| 139 |
+
return super().generate(
|
| 140 |
+
position_ids=position_ids,
|
| 141 |
+
attention_mask=attention_mask,
|
| 142 |
+
inputs_embeds=inputs_embeds,
|
| 143 |
+
**kwargs
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
| 147 |
+
inputs_embeds=None, **kwargs):
|
| 148 |
+
images = kwargs.pop("images", None)
|
| 149 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
| 150 |
+
inputs = super().prepare_inputs_for_generation(
|
| 151 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
| 152 |
+
)
|
| 153 |
+
if images is not None:
|
| 154 |
+
inputs['images'] = images
|
| 155 |
+
if image_sizes is not None:
|
| 156 |
+
inputs['image_sizes'] = image_sizes
|
| 157 |
+
return inputs
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
AutoConfig.register("llava_llama", LlavaConfig)
|
| 161 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ddd97faaa25b6c6ff07d6331659f72c480c74d1f4c16906f8d83d55bfd65bcd
|
| 3 |
+
size 4938985248
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e756bde98bbc38d722b89ba23b8c13c2b65653576df0408899774d69b247a14
|
| 3 |
+
size 4947390768
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c6ff4a128d74592b7c4cd19fd3bb4210550c2ebc8fc775c930fe3ff78107f54
|
| 3 |
+
size 4846538696
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14732820480
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.mm_projector.0.bias": "model-00003-of-00003.safetensors",
|
| 297 |
+
"model.mm_projector.0.weight": "model-00003-of-00003.safetensors",
|
| 298 |
+
"model.mm_projector.2.bias": "model-00003-of-00003.safetensors",
|
| 299 |
+
"model.mm_projector.2.weight": "model-00003-of-00003.safetensors",
|
| 300 |
+
"model.norm.weight": "model-00003-of-00003.safetensors",
|
| 301 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00003.safetensors",
|
| 302 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00003.safetensors",
|
| 303 |
+
"model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00003.safetensors",
|
| 304 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 305 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 306 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 307 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 308 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 309 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 310 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 311 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 312 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 313 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 314 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 315 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 316 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 317 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 318 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 319 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 320 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 321 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 322 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 323 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 324 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 325 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 326 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 327 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 328 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 329 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 330 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 331 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 332 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 333 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 334 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 335 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 336 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 337 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 338 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 339 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 340 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 341 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 342 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 343 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 344 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 345 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 346 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 347 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 348 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 349 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 350 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 351 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 352 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 353 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 354 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 355 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 356 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 357 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 358 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 359 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 360 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 361 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 362 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 363 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 364 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 365 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 366 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 367 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 368 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 369 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 370 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 371 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 372 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 373 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 374 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 375 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 376 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 377 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 378 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 379 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 380 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 381 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 382 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 383 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 384 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 385 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 386 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 387 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 388 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 389 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 390 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 391 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 392 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 393 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 394 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 395 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 396 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 397 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 398 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 399 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 400 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 401 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 402 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 403 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 404 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 405 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 406 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 407 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 408 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 409 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 410 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 411 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 412 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 413 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 414 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 415 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 416 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 417 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 418 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 419 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 420 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 421 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 422 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 423 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 424 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 425 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 426 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 427 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 428 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 429 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 430 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 431 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 432 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 433 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 434 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 435 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 436 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 437 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 438 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 439 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 440 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 441 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 442 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 443 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 444 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 445 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 446 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 447 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 448 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 449 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 450 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 451 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 452 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 453 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 454 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 455 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 456 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 457 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 458 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 459 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 460 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 461 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 462 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 463 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 464 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 465 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 466 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 467 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 468 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 469 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 470 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 471 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 472 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 473 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 474 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 475 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 476 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 477 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 478 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 479 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 480 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 481 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 482 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 483 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 484 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 485 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 486 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 487 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 488 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 489 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 490 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 491 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 492 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 493 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 494 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 495 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 496 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 497 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 498 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 499 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 500 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 501 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 502 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 503 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 504 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 505 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 506 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 507 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 508 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 509 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 510 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 511 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 512 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 513 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 514 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 515 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 516 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 517 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 518 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 519 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 520 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 521 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 522 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 523 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 524 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 525 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 526 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 527 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 528 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 529 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 530 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 531 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 532 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 533 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 534 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 535 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 536 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 537 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 538 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 539 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 540 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 541 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 542 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 543 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 544 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 545 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 546 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 547 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 548 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 549 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 550 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 551 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 552 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 553 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 554 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 555 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 556 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 557 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 558 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 559 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 560 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 561 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 562 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 563 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 564 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 565 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 566 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 567 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 568 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 569 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 570 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 571 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 572 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 573 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 574 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 575 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 576 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 577 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 578 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 579 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 580 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 581 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 582 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 583 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 584 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 585 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 586 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 587 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 588 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 589 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 590 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 591 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 592 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 593 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 594 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 595 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 596 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 597 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 598 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 599 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 600 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 601 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 602 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 603 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 604 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 605 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 606 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 607 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 608 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 609 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 610 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 611 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 612 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 613 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 614 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 615 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 616 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 617 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 618 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 619 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 620 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 621 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 622 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 623 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 624 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 625 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 626 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 627 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 628 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 629 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 630 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 631 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 632 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 633 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 634 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 635 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 636 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 637 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 638 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 639 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 640 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 641 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 642 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 643 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 644 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 645 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 646 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 647 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 648 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 649 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 650 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 651 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 652 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 653 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 654 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 655 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 656 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 657 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 658 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 659 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 660 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 661 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 662 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 663 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 664 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 665 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 666 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 667 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 668 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 669 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 670 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 671 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 672 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00003.safetensors",
|
| 673 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00003.safetensors",
|
| 674 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00003.safetensors",
|
| 675 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00003.safetensors",
|
| 676 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00003.safetensors",
|
| 677 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00003.safetensors",
|
| 678 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00003.safetensors",
|
| 679 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00003.safetensors",
|
| 680 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00003.safetensors",
|
| 681 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 682 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00003.safetensors",
|
| 683 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00003.safetensors",
|
| 684 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00003.safetensors",
|
| 685 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 686 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00003.safetensors",
|
| 687 |
+
"model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 688 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00003-of-00003.safetensors",
|
| 689 |
+
"model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 690 |
+
"model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00003.safetensors",
|
| 691 |
+
"model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00003.safetensors"
|
| 692 |
+
}
|
| 693 |
+
}
|
multimodal_encoder.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import os
|
| 16 |
+
from .clip_encoder import CLIPVisionTower
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
| 20 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
| 21 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
| 22 |
+
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
|
| 23 |
+
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
| 24 |
+
|
| 25 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
multimodal_projector.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import re
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class IdentityMap(nn.Module):
|
| 20 |
+
def __init__(self):
|
| 21 |
+
super().__init__()
|
| 22 |
+
|
| 23 |
+
def forward(self, x, *args, **kwargs):
|
| 24 |
+
return x
|
| 25 |
+
|
| 26 |
+
@property
|
| 27 |
+
def config(self):
|
| 28 |
+
return {"mm_projector_type": 'identity'}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SimpleResBlock(nn.Module):
|
| 32 |
+
def __init__(self, channels):
|
| 33 |
+
super().__init__()
|
| 34 |
+
self.pre_norm = nn.LayerNorm(channels)
|
| 35 |
+
|
| 36 |
+
self.proj = nn.Sequential(
|
| 37 |
+
nn.Linear(channels, channels),
|
| 38 |
+
nn.GELU(),
|
| 39 |
+
nn.Linear(channels, channels)
|
| 40 |
+
)
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
x = self.pre_norm(x)
|
| 43 |
+
return x + self.proj(x)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
| 47 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
| 48 |
+
|
| 49 |
+
if projector_type == 'linear':
|
| 50 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
| 51 |
+
|
| 52 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
| 53 |
+
if mlp_gelu_match:
|
| 54 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
| 55 |
+
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
| 56 |
+
for _ in range(1, mlp_depth):
|
| 57 |
+
modules.append(nn.GELU())
|
| 58 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
| 59 |
+
return nn.Sequential(*modules)
|
| 60 |
+
|
| 61 |
+
if projector_type == 'identity':
|
| 62 |
+
return IdentityMap()
|
| 63 |
+
|
| 64 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
utils.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 Haotian Liu
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import ast
|
| 16 |
+
import math
|
| 17 |
+
import torch
|
| 18 |
+
from PIL import Image
|
| 19 |
+
|
| 20 |
+
from .constants import IMAGE_TOKEN_INDEX
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def get_model_name_from_path(model_path):
|
| 24 |
+
model_path = model_path.strip("/")
|
| 25 |
+
model_paths = model_path.split("/")
|
| 26 |
+
if model_paths[-1].startswith('checkpoint-'):
|
| 27 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
| 28 |
+
else:
|
| 29 |
+
return model_paths[-1]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def select_best_resolution(original_size, possible_resolutions):
|
| 33 |
+
"""
|
| 34 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
| 38 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
tuple: The best fit resolution in the format (width, height).
|
| 42 |
+
"""
|
| 43 |
+
original_width, original_height = original_size
|
| 44 |
+
best_fit = None
|
| 45 |
+
max_effective_resolution = 0
|
| 46 |
+
min_wasted_resolution = float('inf')
|
| 47 |
+
|
| 48 |
+
for width, height in possible_resolutions:
|
| 49 |
+
scale = min(width / original_width, height / original_height)
|
| 50 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
| 51 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
| 52 |
+
wasted_resolution = (width * height) - effective_resolution
|
| 53 |
+
|
| 54 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
| 55 |
+
max_effective_resolution = effective_resolution
|
| 56 |
+
min_wasted_resolution = wasted_resolution
|
| 57 |
+
best_fit = (width, height)
|
| 58 |
+
|
| 59 |
+
return best_fit
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
| 63 |
+
"""
|
| 64 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
| 68 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
| 69 |
+
patch_size (int): The size of each image patch.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
| 73 |
+
"""
|
| 74 |
+
if type(grid_pinpoints) is list:
|
| 75 |
+
possible_resolutions = grid_pinpoints
|
| 76 |
+
else:
|
| 77 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
| 78 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
| 79 |
+
return width // patch_size, height // patch_size
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
| 83 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
| 84 |
+
|
| 85 |
+
def insert_separator(X, sep):
|
| 86 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
| 87 |
+
|
| 88 |
+
input_ids = []
|
| 89 |
+
offset = 0
|
| 90 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
| 91 |
+
offset = 1
|
| 92 |
+
input_ids.append(prompt_chunks[0][0])
|
| 93 |
+
|
| 94 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
| 95 |
+
input_ids.extend(x[offset:])
|
| 96 |
+
|
| 97 |
+
if return_tensors is not None:
|
| 98 |
+
if return_tensors == 'pt':
|
| 99 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
| 100 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
| 101 |
+
return input_ids
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def expand2square(pil_img, background_color):
|
| 105 |
+
width, height = pil_img.size
|
| 106 |
+
if width == height:
|
| 107 |
+
return pil_img
|
| 108 |
+
elif width > height:
|
| 109 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
| 110 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
| 111 |
+
return result
|
| 112 |
+
else:
|
| 113 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
| 114 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
| 115 |
+
return result
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def resize_and_pad_image(image, target_resolution):
|
| 119 |
+
"""
|
| 120 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
image (PIL.Image.Image): The input image.
|
| 124 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
PIL.Image.Image: The resized and padded image.
|
| 128 |
+
"""
|
| 129 |
+
original_width, original_height = image.size
|
| 130 |
+
target_width, target_height = target_resolution
|
| 131 |
+
|
| 132 |
+
scale_w = target_width / original_width
|
| 133 |
+
scale_h = target_height / original_height
|
| 134 |
+
|
| 135 |
+
if scale_w < scale_h:
|
| 136 |
+
new_width = target_width
|
| 137 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
| 138 |
+
else:
|
| 139 |
+
new_height = target_height
|
| 140 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
| 141 |
+
|
| 142 |
+
# Resize the image
|
| 143 |
+
resized_image = image.resize((new_width, new_height))
|
| 144 |
+
|
| 145 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
| 146 |
+
paste_x = (target_width - new_width) // 2
|
| 147 |
+
paste_y = (target_height - new_height) // 2
|
| 148 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
| 149 |
+
|
| 150 |
+
return new_image
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def divide_to_patches(image, patch_size):
|
| 154 |
+
"""
|
| 155 |
+
Divides an image into patches of a specified size.
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
image (PIL.Image.Image): The input image.
|
| 159 |
+
patch_size (int): The size of each patch.
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
| 163 |
+
"""
|
| 164 |
+
patches = []
|
| 165 |
+
width, height = image.size
|
| 166 |
+
for i in range(0, height, patch_size):
|
| 167 |
+
for j in range(0, width, patch_size):
|
| 168 |
+
box = (j, i, j + patch_size, i + patch_size)
|
| 169 |
+
patch = image.crop(box)
|
| 170 |
+
patches.append(patch)
|
| 171 |
+
|
| 172 |
+
return patches
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
| 176 |
+
"""
|
| 177 |
+
Process an image with variable resolutions.
|
| 178 |
+
|
| 179 |
+
Args:
|
| 180 |
+
image (PIL.Image.Image): The input image to be processed.
|
| 181 |
+
processor: The image processor object.
|
| 182 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
torch.Tensor: A tensor containing the processed image patches.
|
| 186 |
+
"""
|
| 187 |
+
if type(grid_pinpoints) is list:
|
| 188 |
+
possible_resolutions = grid_pinpoints
|
| 189 |
+
else:
|
| 190 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
| 191 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
| 192 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
| 193 |
+
|
| 194 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
| 195 |
+
|
| 196 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
| 197 |
+
|
| 198 |
+
image_patches = [image_original_resize] + patches
|
| 199 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
| 200 |
+
for image_patch in image_patches]
|
| 201 |
+
return torch.stack(image_patches, dim=0)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def process_images(images, image_processor, model_cfg):
|
| 205 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
| 206 |
+
new_images = []
|
| 207 |
+
if image_aspect_ratio == 'pad':
|
| 208 |
+
for image in images:
|
| 209 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
| 210 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
| 211 |
+
new_images.append(image)
|
| 212 |
+
elif image_aspect_ratio == "anyres":
|
| 213 |
+
for image in images:
|
| 214 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
| 215 |
+
new_images.append(image)
|
| 216 |
+
else:
|
| 217 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
| 218 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
| 219 |
+
new_images = torch.stack(new_images, dim=0)
|
| 220 |
+
return new_images
|