| import random | |
| import numpy as np | |
| import skimage.color as sc | |
| import torch | |
| def set_channel(*args, n_channels=3): | |
| def _set_channel(img): | |
| if img.ndim == 2: | |
| img = np.expand_dims(img, axis=2) | |
| c = img.shape[2] | |
| if n_channels == 1 and c == 3: | |
| img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2) | |
| elif n_channels == 3 and c == 1: | |
| img = np.concatenate([img] * n_channels, 2) | |
| return img | |
| return [_set_channel(a) for a in args] | |
| def np2Tensor(*args, rgb_range=255): | |
| def _np2Tensor(img): | |
| np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1))) | |
| tensor = torch.from_numpy(np_transpose).float() | |
| tensor.mul_(rgb_range / 255) | |
| return tensor | |
| return [_np2Tensor(a) for a in args] | |