Commit
·
da5a039
1
Parent(s):
d46fba6
Delete files modeling_grok1.py with huggingface_hub
Browse files- modeling_grok1.py +0 -946
modeling_grok1.py
DELETED
@@ -1,946 +0,0 @@
|
|
1 |
-
from typing import List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from transformers.modeling_utils import PreTrainedModel
|
7 |
-
from transformers.utils import logging
|
8 |
-
|
9 |
-
try:
|
10 |
-
from transformers.modeling_attn_mask_utils import \
|
11 |
-
_prepare_4d_causal_attention_mask
|
12 |
-
|
13 |
-
HAS_MASK_UTILS = True
|
14 |
-
except ImportError:
|
15 |
-
HAS_MASK_UTILS = False
|
16 |
-
|
17 |
-
from .configuration_grok1 import Grok1Config
|
18 |
-
from .modeling_grok1_outputs import (MoeCausalLMOutputWithPast,
|
19 |
-
MoeModelOutputWithPast)
|
20 |
-
|
21 |
-
logger = logging.get_logger(__name__)
|
22 |
-
|
23 |
-
|
24 |
-
# copied from https://github.com/huggingface/transformers/blob/v4.36.1/src/transformers/models/mixtral/modeling_mixtral.py
|
25 |
-
def load_balancing_loss_func(
|
26 |
-
gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2
|
27 |
-
) -> float:
|
28 |
-
r"""
|
29 |
-
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
30 |
-
|
31 |
-
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
32 |
-
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
33 |
-
experts is too unbalanced.
|
34 |
-
|
35 |
-
Args:
|
36 |
-
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
37 |
-
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
|
38 |
-
num_experts (`int`, *optional*):
|
39 |
-
Number of experts
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
The auxiliary loss.
|
43 |
-
"""
|
44 |
-
if gate_logits is None:
|
45 |
-
return 0
|
46 |
-
|
47 |
-
if isinstance(gate_logits, tuple):
|
48 |
-
# cat along the layers?
|
49 |
-
compute_device = gate_logits[0].device
|
50 |
-
gate_logits = torch.cat(
|
51 |
-
[gate.to(compute_device) for gate in gate_logits], dim=0
|
52 |
-
)
|
53 |
-
|
54 |
-
routing_weights, selected_experts = torch.topk(gate_logits, top_k, dim=-1)
|
55 |
-
routing_weights = routing_weights.softmax(dim=-1)
|
56 |
-
|
57 |
-
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
58 |
-
if selected_experts.dtype != torch.int64:
|
59 |
-
selected_experts = selected_experts.to(torch.int64)
|
60 |
-
|
61 |
-
if len(selected_experts.shape) == 2:
|
62 |
-
selected_experts = selected_experts.unsqueeze(2)
|
63 |
-
|
64 |
-
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
65 |
-
|
66 |
-
# For a given token, determine if it was routed to a given expert.
|
67 |
-
expert_mask = torch.max(expert_mask, axis=-2).values
|
68 |
-
|
69 |
-
# cast to float32 otherwise mean will fail
|
70 |
-
expert_mask = expert_mask.to(torch.float32)
|
71 |
-
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
72 |
-
|
73 |
-
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
|
74 |
-
return torch.mean(
|
75 |
-
tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)
|
76 |
-
) * (num_experts**2)
|
77 |
-
|
78 |
-
|
79 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
80 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
81 |
-
"""
|
82 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
83 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
84 |
-
"""
|
85 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
86 |
-
if n_rep == 1:
|
87 |
-
return hidden_states
|
88 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(
|
89 |
-
batch, num_key_value_heads, n_rep, slen, head_dim
|
90 |
-
)
|
91 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
92 |
-
|
93 |
-
|
94 |
-
class RMSNorm(nn.Module):
|
95 |
-
def __init__(
|
96 |
-
self,
|
97 |
-
hidden_size: int,
|
98 |
-
eps: float = 1e-5,
|
99 |
-
create_scale: bool = True,
|
100 |
-
) -> None:
|
101 |
-
super().__init__()
|
102 |
-
self.variance_epsilon = eps
|
103 |
-
if create_scale:
|
104 |
-
self.weight = nn.Parameter(torch.zeros(hidden_size))
|
105 |
-
else:
|
106 |
-
self.weight = 1.0
|
107 |
-
|
108 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
109 |
-
input_dtype = hidden_states.dtype
|
110 |
-
hidden_states = hidden_states.to(torch.float32)
|
111 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
112 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
113 |
-
hidden_states = self.weight * hidden_states
|
114 |
-
return hidden_states.to(input_dtype)
|
115 |
-
|
116 |
-
|
117 |
-
class RotaryEmbedding(nn.Module):
|
118 |
-
def __init__(
|
119 |
-
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000
|
120 |
-
) -> None:
|
121 |
-
super().__init__()
|
122 |
-
assert dim % 2 == 0
|
123 |
-
self.dim = dim
|
124 |
-
self.max_position_embeddings = max_position_embeddings
|
125 |
-
self.base = base
|
126 |
-
inv_freq = 1.0 / (
|
127 |
-
self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
128 |
-
)
|
129 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
130 |
-
|
131 |
-
self._set_cos_sin_cache(
|
132 |
-
seq_len=max_position_embeddings,
|
133 |
-
device=self.inv_freq.device,
|
134 |
-
dtype=torch.get_default_dtype(),
|
135 |
-
)
|
136 |
-
|
137 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
138 |
-
self.max_seq_len_cached = seq_len
|
139 |
-
t = torch.arange(
|
140 |
-
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
141 |
-
)
|
142 |
-
|
143 |
-
freqs = torch.outer(t, self.inv_freq)
|
144 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
145 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
146 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
147 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
148 |
-
|
149 |
-
def forward(self, x, seq_len=None):
|
150 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
151 |
-
if seq_len > self.max_seq_len_cached:
|
152 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
153 |
-
|
154 |
-
return (
|
155 |
-
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
156 |
-
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
157 |
-
)
|
158 |
-
|
159 |
-
|
160 |
-
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
161 |
-
def rotate_half(x):
|
162 |
-
"""Rotates half the hidden dims of the input."""
|
163 |
-
x1 = x[..., : x.shape[-1] // 2]
|
164 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
165 |
-
return torch.cat((-x2, x1), dim=-1)
|
166 |
-
|
167 |
-
|
168 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
169 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
170 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
171 |
-
|
172 |
-
Args:
|
173 |
-
q (`torch.Tensor`): The query tensor.
|
174 |
-
k (`torch.Tensor`): The key tensor.
|
175 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
176 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
177 |
-
position_ids (`torch.Tensor`):
|
178 |
-
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
179 |
-
used to pass offsetted position ids when working with a KV-cache.
|
180 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
181 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
182 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
183 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
184 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
185 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
186 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
187 |
-
Returns:
|
188 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
189 |
-
"""
|
190 |
-
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
191 |
-
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
192 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
193 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
194 |
-
return q_embed, k_embed
|
195 |
-
|
196 |
-
|
197 |
-
class MultiHeadAttention(nn.Module):
|
198 |
-
def __init__(
|
199 |
-
self,
|
200 |
-
hidden_size: int,
|
201 |
-
num_heads: int,
|
202 |
-
num_key_value_heads: Optional[int] = None,
|
203 |
-
max_position_embeddings: int = 2048,
|
204 |
-
attn_output_multiplier: float = 1.0,
|
205 |
-
max_attn_val: float = 30.0,
|
206 |
-
):
|
207 |
-
super().__init__()
|
208 |
-
self.hidden_size = hidden_size
|
209 |
-
self.num_heads = num_heads
|
210 |
-
self.head_dim = hidden_size // num_heads
|
211 |
-
if num_key_value_heads is None:
|
212 |
-
num_key_value_heads = num_heads
|
213 |
-
self.num_key_value_heads = num_key_value_heads
|
214 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
215 |
-
self.attn_output_multiplier = attn_output_multiplier
|
216 |
-
self.max_attn_val = max_attn_val
|
217 |
-
|
218 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
219 |
-
raise ValueError(
|
220 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
221 |
-
f" and `num_heads`: {self.num_heads})."
|
222 |
-
)
|
223 |
-
|
224 |
-
self.q_proj = nn.Linear(hidden_size, self.num_heads * self.head_dim, bias=False)
|
225 |
-
self.k_proj = nn.Linear(
|
226 |
-
hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
227 |
-
)
|
228 |
-
self.v_proj = nn.Linear(
|
229 |
-
hidden_size, self.num_key_value_heads * self.head_dim, bias=False
|
230 |
-
)
|
231 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, hidden_size, bias=False)
|
232 |
-
|
233 |
-
self.rotary_emb = RotaryEmbedding(
|
234 |
-
self.head_dim,
|
235 |
-
max_position_embeddings=max_position_embeddings,
|
236 |
-
)
|
237 |
-
|
238 |
-
def forward(
|
239 |
-
self,
|
240 |
-
hidden_states: torch.Tensor,
|
241 |
-
attention_mask: Optional[torch.Tensor] = None,
|
242 |
-
position_ids: Optional[torch.LongTensor] = None,
|
243 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
244 |
-
output_attentions: bool = False,
|
245 |
-
use_cache: bool = False,
|
246 |
-
**kwargs,
|
247 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
248 |
-
bsz, q_len, _ = hidden_states.size()
|
249 |
-
|
250 |
-
query_states = self.q_proj(hidden_states)
|
251 |
-
key_states = self.k_proj(hidden_states)
|
252 |
-
value_states = self.v_proj(hidden_states)
|
253 |
-
|
254 |
-
query_states = query_states.view(
|
255 |
-
bsz, q_len, self.num_heads, self.head_dim
|
256 |
-
).transpose(1, 2)
|
257 |
-
key_states = key_states.view(
|
258 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
259 |
-
).transpose(1, 2)
|
260 |
-
value_states = value_states.view(
|
261 |
-
bsz, q_len, self.num_key_value_heads, self.head_dim
|
262 |
-
).transpose(1, 2)
|
263 |
-
|
264 |
-
kv_seq_len = key_states.shape[-2]
|
265 |
-
if past_key_value is not None:
|
266 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
267 |
-
|
268 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
269 |
-
query_states, key_states = apply_rotary_pos_emb(
|
270 |
-
query_states, key_states, cos, sin, position_ids
|
271 |
-
)
|
272 |
-
|
273 |
-
if past_key_value is not None:
|
274 |
-
# reuse k, v, self_attention
|
275 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
276 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
277 |
-
|
278 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
279 |
-
|
280 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
281 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
282 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
283 |
-
|
284 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)).to(
|
285 |
-
torch.float
|
286 |
-
)
|
287 |
-
attn_weights = attn_weights * self.attn_output_multiplier
|
288 |
-
attn_weights = self.max_attn_val * F.tanh(attn_weights / self.max_attn_val)
|
289 |
-
|
290 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
291 |
-
raise ValueError(
|
292 |
-
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
293 |
-
f" {attn_weights.size()}"
|
294 |
-
)
|
295 |
-
|
296 |
-
if attention_mask is not None:
|
297 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
298 |
-
raise ValueError(
|
299 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
300 |
-
)
|
301 |
-
|
302 |
-
attn_weights = attn_weights + attention_mask
|
303 |
-
|
304 |
-
attn_weights = F.softmax(attn_weights, dim=-1).to(query_states.dtype)
|
305 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
306 |
-
|
307 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
308 |
-
raise ValueError(
|
309 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
310 |
-
f" {attn_output.size()}"
|
311 |
-
)
|
312 |
-
|
313 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
314 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
315 |
-
|
316 |
-
attn_output = self.o_proj(attn_output)
|
317 |
-
|
318 |
-
if not output_attentions:
|
319 |
-
attn_weights = None
|
320 |
-
|
321 |
-
return attn_output, attn_weights, past_key_value
|
322 |
-
|
323 |
-
|
324 |
-
class MoeMLP(nn.Module):
|
325 |
-
def __init__(
|
326 |
-
self,
|
327 |
-
hidden_dim: int,
|
328 |
-
ffn_dim: int,
|
329 |
-
) -> None:
|
330 |
-
super().__init__()
|
331 |
-
self.w3 = nn.Linear(hidden_dim, ffn_dim, bias=False)
|
332 |
-
self.w2 = nn.Linear(ffn_dim, hidden_dim, bias=False)
|
333 |
-
self.w1 = nn.Linear(hidden_dim, ffn_dim, bias=False)
|
334 |
-
self.act_fn = nn.GELU()
|
335 |
-
|
336 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
337 |
-
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(
|
338 |
-
hidden_states
|
339 |
-
)
|
340 |
-
current_hidden_states = self.w2(current_hidden_states)
|
341 |
-
return current_hidden_states
|
342 |
-
|
343 |
-
|
344 |
-
class MoeBlock(nn.Module):
|
345 |
-
def __init__(
|
346 |
-
self,
|
347 |
-
hidden_dim: int,
|
348 |
-
ffn_dim: int,
|
349 |
-
num_experts: int,
|
350 |
-
top_k: int,
|
351 |
-
) -> None:
|
352 |
-
super().__init__()
|
353 |
-
self.num_experts = num_experts
|
354 |
-
self.top_k = top_k
|
355 |
-
self.gate = nn.Linear(hidden_dim, num_experts, bias=False)
|
356 |
-
self.experts = nn.ModuleList(
|
357 |
-
[MoeMLP(hidden_dim, ffn_dim) for _ in range(num_experts)]
|
358 |
-
)
|
359 |
-
|
360 |
-
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]:
|
361 |
-
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
362 |
-
hidden_states = hidden_states.view(-1, hidden_dim)
|
363 |
-
# router_logits: (batch * sequence_length, n_experts)
|
364 |
-
router_logits = self.gate(hidden_states)
|
365 |
-
|
366 |
-
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
367 |
-
routing_weights, selected_experts = torch.topk(
|
368 |
-
routing_weights, self.top_k, dim=-1
|
369 |
-
)
|
370 |
-
# we cast back to the input dtype
|
371 |
-
routing_weights = routing_weights.to(hidden_states.dtype)
|
372 |
-
|
373 |
-
final_hidden_states = torch.zeros(
|
374 |
-
(batch_size * sequence_length, hidden_dim),
|
375 |
-
dtype=hidden_states.dtype,
|
376 |
-
device=hidden_states.device,
|
377 |
-
)
|
378 |
-
# One hot encode the selected experts to create an expert mask
|
379 |
-
# this will be used to easily index which expert is going to be sollicitated
|
380 |
-
expert_mask = torch.nn.functional.one_hot(
|
381 |
-
selected_experts, num_classes=self.num_experts
|
382 |
-
).permute(2, 1, 0)
|
383 |
-
|
384 |
-
# Loop over all available experts in the model and perform the computation on each expert
|
385 |
-
for expert_idx in range(self.num_experts):
|
386 |
-
expert_layer = self.experts[expert_idx]
|
387 |
-
idx, top_x = torch.where(expert_mask[expert_idx])
|
388 |
-
|
389 |
-
if top_x.shape[0] == 0:
|
390 |
-
continue
|
391 |
-
|
392 |
-
# in torch it is faster to index using lists than torch tensors
|
393 |
-
top_x_list = top_x.tolist()
|
394 |
-
idx_list = idx.tolist()
|
395 |
-
|
396 |
-
# Index the correct hidden states and compute the expert hidden state for
|
397 |
-
# the current expert. We need to make sure to multiply the output hidden
|
398 |
-
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
399 |
-
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
400 |
-
current_hidden_states = (
|
401 |
-
expert_layer(current_state)
|
402 |
-
* routing_weights[top_x_list, idx_list, None]
|
403 |
-
)
|
404 |
-
|
405 |
-
# However `index_add_` only support torch tensors for indexing so we'll use
|
406 |
-
# the `top_x` tensor here.
|
407 |
-
final_hidden_states.index_add_(
|
408 |
-
0, top_x, current_hidden_states.to(hidden_states.dtype)
|
409 |
-
)
|
410 |
-
final_hidden_states = final_hidden_states.reshape(
|
411 |
-
batch_size, sequence_length, hidden_dim
|
412 |
-
)
|
413 |
-
return final_hidden_states, router_logits
|
414 |
-
|
415 |
-
|
416 |
-
class DecoderLayer(nn.Module):
|
417 |
-
def __init__(
|
418 |
-
self,
|
419 |
-
hidden_size: int,
|
420 |
-
intermediate_size: int,
|
421 |
-
num_heads: int,
|
422 |
-
num_key_value_heads: int,
|
423 |
-
num_experts: int,
|
424 |
-
top_k: int,
|
425 |
-
max_position_embeddings: int = 2048,
|
426 |
-
attn_output_multiplier: float = 1.0,
|
427 |
-
max_attn_val: float = 30.0,
|
428 |
-
rms_norm_eps: float = 1e-5,
|
429 |
-
) -> None:
|
430 |
-
super().__init__()
|
431 |
-
self.self_attn = MultiHeadAttention(
|
432 |
-
hidden_size,
|
433 |
-
num_heads,
|
434 |
-
num_key_value_heads,
|
435 |
-
max_position_embeddings=max_position_embeddings,
|
436 |
-
attn_output_multiplier=attn_output_multiplier,
|
437 |
-
max_attn_val=max_attn_val,
|
438 |
-
)
|
439 |
-
self.block_sparse_moe = MoeBlock(hidden_size, intermediate_size, num_experts, top_k)
|
440 |
-
self.pre_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
441 |
-
self.post_attn_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
442 |
-
self.pre_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
443 |
-
self.post_moe_norm = RMSNorm(hidden_size, eps=rms_norm_eps)
|
444 |
-
|
445 |
-
def forward(
|
446 |
-
self,
|
447 |
-
hidden_states: torch.Tensor,
|
448 |
-
attention_mask: Optional[torch.Tensor] = None,
|
449 |
-
position_ids: Optional[torch.LongTensor] = None,
|
450 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
451 |
-
output_attentions: Optional[bool] = False,
|
452 |
-
output_router_logits: Optional[bool] = False,
|
453 |
-
use_cache: Optional[bool] = False,
|
454 |
-
**kwargs,
|
455 |
-
) -> Tuple[
|
456 |
-
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
457 |
-
]:
|
458 |
-
residual = hidden_states
|
459 |
-
hidden_states = self.pre_attn_norm(hidden_states)
|
460 |
-
hidden_states, attention_weights, present_key_value = self.self_attn(
|
461 |
-
hidden_states,
|
462 |
-
attention_mask=attention_mask,
|
463 |
-
position_ids=position_ids,
|
464 |
-
past_key_value=past_key_value,
|
465 |
-
output_attentions=output_attentions,
|
466 |
-
use_cache=use_cache,
|
467 |
-
)
|
468 |
-
hidden_states = self.post_attn_norm(hidden_states)
|
469 |
-
hidden_states = residual + hidden_states
|
470 |
-
|
471 |
-
residual = hidden_states
|
472 |
-
hidden_states = self.pre_moe_norm(hidden_states)
|
473 |
-
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
474 |
-
hidden_states = self.post_moe_norm(hidden_states)
|
475 |
-
hidden_states = residual + hidden_states
|
476 |
-
|
477 |
-
outputs = (hidden_states,)
|
478 |
-
if output_attentions:
|
479 |
-
outputs += (attention_weights,)
|
480 |
-
if use_cache:
|
481 |
-
outputs += (present_key_value,)
|
482 |
-
if output_router_logits:
|
483 |
-
outputs += (router_logits,)
|
484 |
-
return outputs
|
485 |
-
|
486 |
-
|
487 |
-
class Grok1PretrainedModel(PreTrainedModel):
|
488 |
-
config_class = Grok1Config
|
489 |
-
base_model_prefix = "model"
|
490 |
-
supports_gradient_checkpointing = True
|
491 |
-
_no_split_modules = ["DecoderLayer"]
|
492 |
-
_skip_keys_device_placement = "past_key_values"
|
493 |
-
_supports_flash_attn_2 = False
|
494 |
-
_supports_cache_class = False
|
495 |
-
|
496 |
-
def _init_weights(self, module) -> None:
|
497 |
-
if isinstance(module, nn.Linear):
|
498 |
-
module.weight.data.zero_()
|
499 |
-
if module.bias is not None:
|
500 |
-
module.bias.data.zero_()
|
501 |
-
elif isinstance(module, nn.Embedding):
|
502 |
-
module.weight.data.zero_()
|
503 |
-
|
504 |
-
|
505 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
506 |
-
def _make_causal_mask(
|
507 |
-
input_ids_shape: torch.Size,
|
508 |
-
dtype: torch.dtype,
|
509 |
-
device: torch.device,
|
510 |
-
past_key_values_length: int = 0,
|
511 |
-
):
|
512 |
-
"""
|
513 |
-
Make causal mask used for bi-directional self-attention.
|
514 |
-
"""
|
515 |
-
bsz, tgt_len = input_ids_shape
|
516 |
-
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
517 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
518 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
519 |
-
mask = mask.to(dtype)
|
520 |
-
|
521 |
-
if past_key_values_length > 0:
|
522 |
-
mask = torch.cat(
|
523 |
-
[
|
524 |
-
torch.zeros(
|
525 |
-
tgt_len, past_key_values_length, dtype=dtype, device=device
|
526 |
-
),
|
527 |
-
mask,
|
528 |
-
],
|
529 |
-
dim=-1,
|
530 |
-
)
|
531 |
-
return mask[None, None, :, :].expand(
|
532 |
-
bsz, 1, tgt_len, tgt_len + past_key_values_length
|
533 |
-
)
|
534 |
-
|
535 |
-
|
536 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
537 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
538 |
-
"""
|
539 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
540 |
-
"""
|
541 |
-
bsz, src_len = mask.size()
|
542 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
543 |
-
|
544 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
545 |
-
|
546 |
-
inverted_mask = 1.0 - expanded_mask
|
547 |
-
|
548 |
-
return inverted_mask.masked_fill(
|
549 |
-
inverted_mask.to(torch.bool), torch.finfo(dtype).min
|
550 |
-
)
|
551 |
-
|
552 |
-
|
553 |
-
class Grok1Model(Grok1PretrainedModel):
|
554 |
-
def __init__(self, config: Grok1Config, **kwargs) -> None:
|
555 |
-
super().__init__(config)
|
556 |
-
self.padding_idx = config.pad_token_id
|
557 |
-
self.vocab_size = config.vocab_size
|
558 |
-
self.embedding_multiplier_scale = config.embedding_multiplier_scale
|
559 |
-
|
560 |
-
self.embed_tokens = nn.Embedding(
|
561 |
-
config.vocab_size, config.hidden_size, self.padding_idx
|
562 |
-
)
|
563 |
-
self.layers = nn.ModuleList(
|
564 |
-
[
|
565 |
-
DecoderLayer(
|
566 |
-
hidden_size=config.hidden_size,
|
567 |
-
intermediate_size=config.intermediate_size,
|
568 |
-
num_heads=config.num_attention_heads,
|
569 |
-
num_key_value_heads=config.num_key_value_heads,
|
570 |
-
num_experts=config.num_experts,
|
571 |
-
top_k=config.num_experts_per_tok,
|
572 |
-
max_position_embeddings=config.max_position_embeddings,
|
573 |
-
attn_output_multiplier=config.attn_output_multiplier,
|
574 |
-
max_attn_val=config.max_attn_value,
|
575 |
-
rms_norm_eps=config.rms_norm_eps,
|
576 |
-
)
|
577 |
-
for layer_idx in range(config.num_hidden_layers)
|
578 |
-
]
|
579 |
-
)
|
580 |
-
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
581 |
-
self.gradient_checkpointing = False
|
582 |
-
self.post_init()
|
583 |
-
|
584 |
-
def get_input_embeddings(self):
|
585 |
-
return self.embed_tokens
|
586 |
-
|
587 |
-
def set_input_embeddings(self, value):
|
588 |
-
self.embed_tokens = value
|
589 |
-
|
590 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
591 |
-
def _prepare_decoder_attention_mask(
|
592 |
-
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
593 |
-
):
|
594 |
-
# create causal mask
|
595 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
596 |
-
combined_attention_mask = None
|
597 |
-
if input_shape[-1] > 1:
|
598 |
-
combined_attention_mask = _make_causal_mask(
|
599 |
-
input_shape,
|
600 |
-
inputs_embeds.dtype,
|
601 |
-
device=inputs_embeds.device,
|
602 |
-
past_key_values_length=past_key_values_length,
|
603 |
-
)
|
604 |
-
|
605 |
-
if attention_mask is not None:
|
606 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
607 |
-
expanded_attn_mask = _expand_mask(
|
608 |
-
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
609 |
-
).to(inputs_embeds.device)
|
610 |
-
combined_attention_mask = (
|
611 |
-
expanded_attn_mask
|
612 |
-
if combined_attention_mask is None
|
613 |
-
else expanded_attn_mask + combined_attention_mask
|
614 |
-
)
|
615 |
-
|
616 |
-
return combined_attention_mask
|
617 |
-
|
618 |
-
def forward(
|
619 |
-
self,
|
620 |
-
input_ids: torch.LongTensor = None,
|
621 |
-
attention_mask: Optional[torch.Tensor] = None,
|
622 |
-
position_ids: Optional[torch.LongTensor] = None,
|
623 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
624 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
625 |
-
use_cache: Optional[bool] = None,
|
626 |
-
output_attentions: Optional[bool] = None,
|
627 |
-
output_hidden_states: Optional[bool] = None,
|
628 |
-
output_router_logits: Optional[bool] = None,
|
629 |
-
return_dict: Optional[bool] = None,
|
630 |
-
) -> Union[Tuple, MoeModelOutputWithPast]:
|
631 |
-
output_attentions = (
|
632 |
-
output_attentions
|
633 |
-
if output_attentions is not None
|
634 |
-
else self.config.output_attentions
|
635 |
-
)
|
636 |
-
output_hidden_states = (
|
637 |
-
output_hidden_states
|
638 |
-
if output_hidden_states is not None
|
639 |
-
else self.config.output_hidden_states
|
640 |
-
)
|
641 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
642 |
-
|
643 |
-
return_dict = (
|
644 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
645 |
-
)
|
646 |
-
|
647 |
-
# retrieve input_ids and inputs_embeds
|
648 |
-
if input_ids is not None and inputs_embeds is not None:
|
649 |
-
raise ValueError(
|
650 |
-
"You cannot specify both input_ids and inputs_embeds at the same time"
|
651 |
-
)
|
652 |
-
elif input_ids is not None:
|
653 |
-
batch_size, seq_length = input_ids.shape[:2]
|
654 |
-
elif inputs_embeds is not None:
|
655 |
-
batch_size, seq_length = inputs_embeds.shape[:2]
|
656 |
-
else:
|
657 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
658 |
-
|
659 |
-
seq_length_with_past = seq_length
|
660 |
-
past_key_values_length = 0
|
661 |
-
if past_key_values is not None:
|
662 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
663 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
664 |
-
|
665 |
-
if position_ids is None:
|
666 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
667 |
-
position_ids = torch.arange(
|
668 |
-
past_key_values_length,
|
669 |
-
seq_length + past_key_values_length,
|
670 |
-
dtype=torch.long,
|
671 |
-
device=device,
|
672 |
-
)
|
673 |
-
position_ids = position_ids.unsqueeze(0)
|
674 |
-
|
675 |
-
if inputs_embeds is None:
|
676 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
677 |
-
inputs_embeds = inputs_embeds * self.embedding_multiplier_scale
|
678 |
-
|
679 |
-
if HAS_MASK_UTILS:
|
680 |
-
# 4d mask is passed through the layers
|
681 |
-
attention_mask = _prepare_4d_causal_attention_mask(
|
682 |
-
attention_mask,
|
683 |
-
(batch_size, seq_length),
|
684 |
-
inputs_embeds,
|
685 |
-
past_key_values_length,
|
686 |
-
)
|
687 |
-
else:
|
688 |
-
if attention_mask is None:
|
689 |
-
attention_mask = torch.ones(
|
690 |
-
(batch_size, seq_length_with_past),
|
691 |
-
dtype=torch.bool,
|
692 |
-
device=inputs_embeds.device,
|
693 |
-
)
|
694 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
695 |
-
attention_mask,
|
696 |
-
(batch_size, seq_length),
|
697 |
-
inputs_embeds,
|
698 |
-
past_key_values_length,
|
699 |
-
)
|
700 |
-
|
701 |
-
# embed positions
|
702 |
-
hidden_states = inputs_embeds
|
703 |
-
|
704 |
-
if self.gradient_checkpointing and self.training:
|
705 |
-
if use_cache:
|
706 |
-
logger.warning_once(
|
707 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
708 |
-
)
|
709 |
-
use_cache = False
|
710 |
-
|
711 |
-
# decoder layers
|
712 |
-
all_hidden_states = () if output_hidden_states else None
|
713 |
-
all_self_attns = () if output_attentions else None
|
714 |
-
all_router_logits = () if output_router_logits else None
|
715 |
-
next_decoder_cache = () if use_cache else None
|
716 |
-
|
717 |
-
for idx, decoder_layer in enumerate(self.layers):
|
718 |
-
if output_hidden_states:
|
719 |
-
all_hidden_states += (hidden_states,)
|
720 |
-
|
721 |
-
past_key_value = (
|
722 |
-
past_key_values[idx] if past_key_values is not None else None
|
723 |
-
)
|
724 |
-
|
725 |
-
if self.gradient_checkpointing and self.training:
|
726 |
-
|
727 |
-
def create_custom_forward(module):
|
728 |
-
def custom_forward(*inputs):
|
729 |
-
# None for past_key_value
|
730 |
-
return module(*inputs, past_key_value, output_attentions)
|
731 |
-
|
732 |
-
return custom_forward
|
733 |
-
|
734 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
735 |
-
create_custom_forward(decoder_layer),
|
736 |
-
hidden_states,
|
737 |
-
attention_mask,
|
738 |
-
position_ids,
|
739 |
-
)
|
740 |
-
else:
|
741 |
-
layer_outputs = decoder_layer(
|
742 |
-
hidden_states,
|
743 |
-
attention_mask=attention_mask,
|
744 |
-
position_ids=position_ids,
|
745 |
-
past_key_value=past_key_value,
|
746 |
-
output_attentions=output_attentions,
|
747 |
-
use_cache=use_cache,
|
748 |
-
)
|
749 |
-
|
750 |
-
hidden_states = layer_outputs[0]
|
751 |
-
|
752 |
-
if use_cache:
|
753 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
754 |
-
|
755 |
-
if output_attentions:
|
756 |
-
all_self_attns += (layer_outputs[1],)
|
757 |
-
|
758 |
-
if output_router_logits:
|
759 |
-
all_router_logits += (layer_outputs[-1],)
|
760 |
-
|
761 |
-
hidden_states = self.norm(hidden_states)
|
762 |
-
|
763 |
-
# add hidden states from the last decoder layer
|
764 |
-
if output_hidden_states:
|
765 |
-
all_hidden_states += (hidden_states,)
|
766 |
-
next_cache = next_decoder_cache if use_cache else None
|
767 |
-
|
768 |
-
if not return_dict:
|
769 |
-
return tuple(
|
770 |
-
v
|
771 |
-
for v in [
|
772 |
-
hidden_states,
|
773 |
-
next_cache,
|
774 |
-
all_hidden_states,
|
775 |
-
all_self_attns,
|
776 |
-
all_router_logits,
|
777 |
-
]
|
778 |
-
if v is not None
|
779 |
-
)
|
780 |
-
return MoeModelOutputWithPast(
|
781 |
-
last_hidden_state=hidden_states,
|
782 |
-
past_key_values=next_cache,
|
783 |
-
hidden_states=all_hidden_states,
|
784 |
-
attentions=all_self_attns,
|
785 |
-
router_logits=all_router_logits,
|
786 |
-
)
|
787 |
-
|
788 |
-
|
789 |
-
class Grok1ModelForCausalLM(Grok1PretrainedModel):
|
790 |
-
_tied_weights_keys = ["lm_head.weight"]
|
791 |
-
|
792 |
-
def __init__(self, config: Grok1Config, **kwargs):
|
793 |
-
super().__init__(config)
|
794 |
-
self.model = Grok1Model(config)
|
795 |
-
self.vocab_size = config.vocab_size
|
796 |
-
self.output_multiplier_scale = config.output_multiplier_scale
|
797 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
798 |
-
self.router_aux_loss_coef = config.router_aux_loss_coef
|
799 |
-
self.num_experts = config.num_experts
|
800 |
-
self.num_experts_per_tok = config.num_experts_per_tok
|
801 |
-
self.post_init()
|
802 |
-
|
803 |
-
def get_input_embeddings(self):
|
804 |
-
return self.model.embed_tokens
|
805 |
-
|
806 |
-
def set_input_embeddings(self, value):
|
807 |
-
self.model.embed_tokens = value
|
808 |
-
|
809 |
-
def get_output_embeddings(self):
|
810 |
-
return self.lm_head
|
811 |
-
|
812 |
-
def set_output_embeddings(self, new_embeddings):
|
813 |
-
self.lm_head = new_embeddings
|
814 |
-
|
815 |
-
def set_decoder(self, decoder):
|
816 |
-
self.model = decoder
|
817 |
-
|
818 |
-
def get_decoder(self):
|
819 |
-
return self.model
|
820 |
-
|
821 |
-
def forward(
|
822 |
-
self,
|
823 |
-
input_ids: torch.LongTensor = None,
|
824 |
-
attention_mask: Optional[torch.Tensor] = None,
|
825 |
-
position_ids: Optional[torch.LongTensor] = None,
|
826 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
827 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
828 |
-
labels: Optional[torch.LongTensor] = None,
|
829 |
-
use_cache: Optional[bool] = None,
|
830 |
-
output_attentions: Optional[bool] = None,
|
831 |
-
output_hidden_states: Optional[bool] = None,
|
832 |
-
output_router_logits: Optional[bool] = None,
|
833 |
-
return_dict: Optional[bool] = None,
|
834 |
-
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
835 |
-
output_attentions = (
|
836 |
-
output_attentions
|
837 |
-
if output_attentions is not None
|
838 |
-
else self.config.output_attentions
|
839 |
-
)
|
840 |
-
output_router_logits = (
|
841 |
-
output_router_logits
|
842 |
-
if output_router_logits is not None
|
843 |
-
else self.config.output_router_logits
|
844 |
-
)
|
845 |
-
|
846 |
-
output_hidden_states = (
|
847 |
-
output_hidden_states
|
848 |
-
if output_hidden_states is not None
|
849 |
-
else self.config.output_hidden_states
|
850 |
-
)
|
851 |
-
return_dict = (
|
852 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
853 |
-
)
|
854 |
-
|
855 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
856 |
-
outputs = self.model(
|
857 |
-
input_ids=input_ids,
|
858 |
-
attention_mask=attention_mask,
|
859 |
-
position_ids=position_ids,
|
860 |
-
past_key_values=past_key_values,
|
861 |
-
inputs_embeds=inputs_embeds,
|
862 |
-
use_cache=use_cache,
|
863 |
-
output_attentions=output_attentions,
|
864 |
-
output_hidden_states=output_hidden_states,
|
865 |
-
output_router_logits=output_router_logits,
|
866 |
-
return_dict=return_dict,
|
867 |
-
)
|
868 |
-
|
869 |
-
hidden_states = outputs[0]
|
870 |
-
logits = self.lm_head(hidden_states)
|
871 |
-
logits = logits * self.output_multiplier_scale
|
872 |
-
logits = logits.float()
|
873 |
-
|
874 |
-
loss = None
|
875 |
-
if labels is not None:
|
876 |
-
# Shift so that tokens < n predict n
|
877 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
878 |
-
shift_labels = labels[..., 1:].contiguous()
|
879 |
-
# Flatten the tokens
|
880 |
-
loss_fct = nn.CrossEntropyLoss()
|
881 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
882 |
-
shift_labels = shift_labels.view(-1)
|
883 |
-
# Enable model parallelism
|
884 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
885 |
-
loss = loss_fct(shift_logits, shift_labels)
|
886 |
-
|
887 |
-
aux_loss = None
|
888 |
-
if output_router_logits:
|
889 |
-
aux_loss = load_balancing_loss_func(
|
890 |
-
outputs.router_logits if return_dict else outputs[-1],
|
891 |
-
self.num_experts,
|
892 |
-
self.num_experts_per_tok,
|
893 |
-
)
|
894 |
-
if labels is not None:
|
895 |
-
loss += self.router_aux_loss_coef * aux_loss
|
896 |
-
|
897 |
-
if not return_dict:
|
898 |
-
output = (logits,) + outputs[1:]
|
899 |
-
if output_router_logits:
|
900 |
-
output = (aux_loss,) + output
|
901 |
-
return (loss,) + output if loss is not None else output
|
902 |
-
|
903 |
-
return MoeCausalLMOutputWithPast(
|
904 |
-
loss=loss,
|
905 |
-
aux_loss=aux_loss,
|
906 |
-
logits=logits,
|
907 |
-
past_key_values=outputs.past_key_values,
|
908 |
-
hidden_states=outputs.hidden_states,
|
909 |
-
attentions=outputs.attentions,
|
910 |
-
router_logits=outputs.router_logits,
|
911 |
-
)
|
912 |
-
|
913 |
-
def prepare_inputs_for_generation(
|
914 |
-
self,
|
915 |
-
input_ids,
|
916 |
-
past_key_values=None,
|
917 |
-
attention_mask=None,
|
918 |
-
inputs_embeds=None,
|
919 |
-
**kwargs,
|
920 |
-
):
|
921 |
-
if past_key_values:
|
922 |
-
input_ids = input_ids[:, -1:]
|
923 |
-
|
924 |
-
position_ids = kwargs.get("position_ids", None)
|
925 |
-
if attention_mask is not None and position_ids is None:
|
926 |
-
# create position_ids on the fly for batch generation
|
927 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
928 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
929 |
-
if past_key_values:
|
930 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
931 |
-
|
932 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
933 |
-
if inputs_embeds is not None and past_key_values is None:
|
934 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
935 |
-
else:
|
936 |
-
model_inputs = {"input_ids": input_ids}
|
937 |
-
|
938 |
-
model_inputs.update(
|
939 |
-
{
|
940 |
-
"position_ids": position_ids,
|
941 |
-
"past_key_values": past_key_values,
|
942 |
-
"use_cache": kwargs.get("use_cache"),
|
943 |
-
"attention_mask": attention_mask,
|
944 |
-
}
|
945 |
-
)
|
946 |
-
return model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|