File size: 1,734 Bytes
5e973ea 8490a85 5e973ea b0b2c96 5e973ea b0b2c96 5e973ea b0b2c96 5e973ea b0b2c96 5e973ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
base_model: lmzheng/grok-1
---
# Grok-1-W4A8KV8
## Introduction
This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset.
## Quantization Stragegy
- ***Quantized Layers***: All linear layers excluding "lm_head", "*.gate"
- ***Weight***: FP8 symmetric per-tensor, additionally, INT4 symmetric per-channel for MoE linear
- ***Activation***: FP8 symmetric per-tensor
- ***KV Cache***: FP8 symmetric per-tensor
### INT4 Packing
Every eight `int4` values are packed into a single `int32` integeter following the sequence defined by `order_map = [0, 2, 4, 6, 1, 3, 5, 7]`.
## Quick Start
1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html)
2. Run the quantization script in the example folder using the following command line:
```sh
export MODEL_DIR = [local model checkpoint folder] or lmzheng/grok-1
python3 quantize_quark.py \
--model_dir $MODEL_DIR \
--output_dir grok-1-W4A8KV8 \
--quant_scheme TBD \
--kv_cache_dtype fp8 \
--num_calib_data 128 \
--model_export hf_format \
--multi_gpu \
--custom_mode fp8
```
## Deployment
Quark has its own export format and allows FP8 quantized models to be efficiently deployed using the SGLang backend.
## Evaluation
#### Evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>grok-1 </strong>
</td>
<td><strong>grok-1-W4A8KV8(this model)</strong>
</td>
</tr>
<tr>
<td>gsm8k
</td>
<td>0.821
</td>
<td>0.817
</td>
</tr>
</table>
#### License
Modifications copyright(c) 2024 Advanced Micro Devices,Inc. All rights reserved.
|