Prakamya commited on
Commit
a02feaf
·
verified ·
1 Parent(s): d1c8b5b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -0
README.md CHANGED
@@ -38,6 +38,31 @@ Derived from [Instella-3B-Instruct](https://huggingface.co/amd/Instella-3B-Instr
38
  <em><b>Figure 1:</b> Instella-Math Training Steps</em>
39
  </div>
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  # Supervised Finetuning (SFT)
42
 
43
  We perform a two-stage supervised fine-tuning process to gradually enhance the reasoning capabilities of the Instella-3B-Instruct model. The first stage we use instruction tuning for mathematical coverage. The second stage enables the model to generate in-depth analyses and structured reasoning steps, which are crucial for tackling complex problems like Olympiad-level math questions.
 
38
  <em><b>Figure 1:</b> Instella-Math Training Steps</em>
39
  </div>
40
 
41
+ ## Example Usage
42
+ ```python
43
+ from transformers import AutoModelForCausalLM, AutoTokenizer
44
+ checkpoint = "amd/Instella-3B-Math"
45
+
46
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
47
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", trust_remote_code=True)
48
+
49
+ prompt = [{"role": "user", "content": "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May? Let's think step by step and output the final answer within \\boxed{}."}]
50
+ inputs = tokenizer.apply_chat_template(
51
+ prompt,
52
+ add_generation_prompt=True,
53
+ return_tensors='pt'
54
+ )
55
+
56
+ tokens = model.generate(
57
+ inputs.to(model.device),
58
+ max_new_tokens=1024,
59
+ temperature=0.8,
60
+ do_sample=True
61
+ )
62
+
63
+ print(tokenizer.decode(tokens[0], skip_special_tokens=False))
64
+ ```
65
+
66
  # Supervised Finetuning (SFT)
67
 
68
  We perform a two-stage supervised fine-tuning process to gradually enhance the reasoning capabilities of the Instella-3B-Instruct model. The first stage we use instruction tuning for mathematical coverage. The second stage enables the model to generate in-depth analyses and structured reasoning steps, which are crucial for tackling complex problems like Olympiad-level math questions.