Upload math_model.py with huggingface_hub
Browse files- math_model.py +62 -0
math_model.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
def quantize(tensor, scale, zero_point, is_asym=False):
|
| 5 |
+
if is_asym:
|
| 6 |
+
clamp_min, clamp_max = torch.tensor(0.), torch.tensor(255.)
|
| 7 |
+
else:
|
| 8 |
+
clamp_min, clamp_max = torch.tensor(-128.), torch.tensor(127.)
|
| 9 |
+
quant_tensor = torch.clamp(torch.round(tensor/scale), clamp_min, clamp_max) + zero_point
|
| 10 |
+
return quant_tensor
|
| 11 |
+
|
| 12 |
+
def dequantize(tensor, scale, zero_point):
|
| 13 |
+
return (tensor - zero_point) * scale
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class QuantLinear(nn.Module):
|
| 17 |
+
def __init__(self, quant_param):
|
| 18 |
+
super().__init__()
|
| 19 |
+
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
| 20 |
+
self.register_buffer('mul_factor', mul_factor)
|
| 21 |
+
self.linear = nn.Linear(128, 128)
|
| 22 |
+
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
| 23 |
+
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
| 24 |
+
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
| 25 |
+
input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape'])
|
| 26 |
+
self.register_buffer('weight_scale', weight_scale)
|
| 27 |
+
self.register_buffer('weight_zp', weight_zp)
|
| 28 |
+
self.register_buffer('input_scale', input_scale)
|
| 29 |
+
self.register_buffer('input_zp', input_zp)
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
scaled_x = x * self.mul_factor
|
| 33 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
| 34 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
| 35 |
+
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
| 36 |
+
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
| 37 |
+
out = torch.nn.functional.linear(dequantized_input, dequantized_weight, self.linear.bias)
|
| 38 |
+
return out
|
| 39 |
+
|
| 40 |
+
class QuantConv2d(nn.Module):
|
| 41 |
+
def __init__(self, quant_param):
|
| 42 |
+
super().__init__()
|
| 43 |
+
mul_factor = torch.tensor(quant_param['smoothquant_mul']).view(quant_param['smoothquant_mul_shape'])
|
| 44 |
+
self.register_buffer('mul_factor', mul_factor)
|
| 45 |
+
self.conv2d = nn.Conv2d(128, 128, 3)
|
| 46 |
+
weight_scale = torch.tensor(quant_param['weight_scale']).view(quant_param['weight_scale_shape'])
|
| 47 |
+
weight_zp = torch.tensor(quant_param['weight_zp']).view(quant_param['weight_zp_shape'])
|
| 48 |
+
input_scale = torch.tensor(quant_param['input_scale']).view(quant_param['input_scale_shape'])
|
| 49 |
+
input_zp = torch.tensor(quant_param['input_zp']).view(quant_param['input_zp_shape'])
|
| 50 |
+
self.register_buffer('weight_scale', weight_scale)
|
| 51 |
+
self.register_buffer('weight_zp', weight_zp)
|
| 52 |
+
self.register_buffer('input_scale', input_scale)
|
| 53 |
+
self.register_buffer('input_zp', input_zp)
|
| 54 |
+
|
| 55 |
+
def forward(self, x):
|
| 56 |
+
scaled_x = x * self.mul_factor
|
| 57 |
+
quant_weight = quantize(self.linear.weight, self.weight_scale, self.weight_zp, is_asym=True)
|
| 58 |
+
quant_input = quantize(scaled_x, self.input_scale, self.input_zp, is_asym=False)
|
| 59 |
+
dequantized_weight = dequantize(quant_weight, self.weight_scale, self.weight_zp)
|
| 60 |
+
dequantized_input = dequantize(quant_input, self.input_scale, self.input_zp)
|
| 61 |
+
out = torch.nn.functional.conv2d(dequantized_input, dequantized_weight, self.conv2d.bias)
|
| 62 |
+
return out
|