Create handler.py
Browse files- handler.py +79 -0
handler.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from copy import deepcopy
|
2 |
+
from typing import Any, Dict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
6 |
+
from transformers.image_utils import load_image
|
7 |
+
|
8 |
+
IMAGE_TOKENS = "<image_start><image><image_end>"
|
9 |
+
SEPARATOR = "\n"
|
10 |
+
|
11 |
+
|
12 |
+
class EndpointHandler:
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
model_dir: str = "alvarobartt/Magma-8B",
|
16 |
+
**kwargs: Any, # type: ignore
|
17 |
+
) -> None:
|
18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_dir, trust_remote_code=True, torch_dtype=torch.bfloat16
|
20 |
+
).eval()
|
21 |
+
self.processor = AutoProcessor.from_pretrained(
|
22 |
+
model_dir, trust_remote_code=True
|
23 |
+
)
|
24 |
+
|
25 |
+
def __call__(self, data: Dict[str, Any]) -> Any:
|
26 |
+
if "messages" not in data:
|
27 |
+
raise ValueError(
|
28 |
+
"The request body must contain a key 'messages' with a list of messages."
|
29 |
+
)
|
30 |
+
|
31 |
+
messages, images = [], []
|
32 |
+
for message in data["messages"]:
|
33 |
+
if isinstance(list, message["content"]):
|
34 |
+
new_message = {"role": message["role"], "content": ""}
|
35 |
+
for content in message["content"]:
|
36 |
+
if content["type"] == "text":
|
37 |
+
new_message["content"] += content["text"]
|
38 |
+
elif content["type"] == "image_url":
|
39 |
+
images.append(load_image(content["image_url"]["url"]))
|
40 |
+
if new_message["content"].count(
|
41 |
+
f"{IMAGE_TOKENS}{SEPARATOR}"
|
42 |
+
) < len(images):
|
43 |
+
new_message["content"] = (
|
44 |
+
f"{IMAGE_TOKENS}{SEPARATOR}" + new_message["content"]
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
messages.append(
|
48 |
+
{"role": message["role"], "content": message["content"]}
|
49 |
+
)
|
50 |
+
|
51 |
+
data.pop("messages")
|
52 |
+
|
53 |
+
prompt = self.processor.tokenizer.apply_chat_template(
|
54 |
+
messages, tokenize=False, add_generation_prompt=True
|
55 |
+
)
|
56 |
+
|
57 |
+
inputs = self.processor(images=images, texts=prompt, return_tensors="pt")
|
58 |
+
inputs["pixel_values"] = inputs["pixel_values"].unsqueeze(0)
|
59 |
+
inputs["image_sizes"] = inputs["image_sizes"].unsqueeze(0)
|
60 |
+
inputs = inputs.to("cuda").to(torch.bfloat16)
|
61 |
+
|
62 |
+
generation_args = {
|
63 |
+
"max_new_tokens": 128,
|
64 |
+
"temperature": 0.0,
|
65 |
+
"do_sample": False,
|
66 |
+
"use_cache": True,
|
67 |
+
"num_beams": 1,
|
68 |
+
}
|
69 |
+
generation_args.update(data)
|
70 |
+
|
71 |
+
with torch.inference_mode():
|
72 |
+
generate_ids = self.model.generate(**inputs, **generation_args)
|
73 |
+
|
74 |
+
generate_ids = generate_ids[:, inputs["input_ids"].shape[-1] :]
|
75 |
+
response = self.processor.decode(
|
76 |
+
generate_ids[0], skip_special_tokens=True
|
77 |
+
).strip()
|
78 |
+
|
79 |
+
return {"generated_text": response}
|