Push model
Browse files- .gitattributes +11 -0
- README.md +63 -0
- dqn_atari.py +561 -0
- dqn_atari_1000000.safetensors +3 -0
- dqn_atari_2000000.safetensors +3 -0
- dqn_atari_3000000.safetensors +3 -0
- dqn_atari_4000000.safetensors +3 -0
- dqn_atari_5000000.safetensors +3 -0
- dqn_atari_6000000.safetensors +3 -0
- dqn_atari_7000000.safetensors +3 -0
- dqn_atari_8000000.safetensors +3 -0
- dqn_atari_9000000.safetensors +3 -0
- dqn_atari_final.safetensors +3 -0
- events.out.tfevents.1755876604.dc81b9906985.2178.0 +3 -0
- hyperparameters.json +25 -0
- pyproject.toml +16 -0
- replay.mp4 +3 -0
- uv.lock +0 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-0.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-1.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-2.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-3.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-4.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-5.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-6.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-7.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-8.mp4 +3 -0
- videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-9.mp4 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,14 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-8.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-2.mp4 filter=lfs diff=lfs merge=lfs -text
|
38 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-7.mp4 filter=lfs diff=lfs merge=lfs -text
|
39 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-4.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-0.mp4 filter=lfs diff=lfs merge=lfs -text
|
41 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-3.mp4 filter=lfs diff=lfs merge=lfs -text
|
42 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-6.mp4 filter=lfs diff=lfs merge=lfs -text
|
43 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-5.mp4 filter=lfs diff=lfs merge=lfs -text
|
44 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-1.mp4 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-9.mp4 filter=lfs diff=lfs merge=lfs -text
|
46 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- reinforcement-learning
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- DQN
|
6 |
+
- SpaceInvadersNoFrameskip-v4
|
7 |
+
library_name: rlhell
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: SpaceInvadersNoFrameskip-v4
|
16 |
+
type: SpaceInvadersNoFrameskip-v4
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1813.50 +/- 579.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# (RLHell) **DQN** Agent Playing **SpaceInvadersNoFrameskip-v4**
|
25 |
+
|
26 |
+
The model was trained by using [rlhell](https://github.com/alperenunlu/rlhell).
|
27 |
+
|
28 |
+
## Command to reproduce the training
|
29 |
+
|
30 |
+
```bash
|
31 |
+
curl -OL https://huggingface.co/alperenunlu/SpaceInvadersNoFrameskip-v4-dqn_atari/raw/main/dqn_atari.py
|
32 |
+
curl -OL https://huggingface.co/alperenunlu/SpaceInvadersNoFrameskip-v4-dqn_atari/raw/main/pyproject.toml
|
33 |
+
curl -OL https://huggingface.co/alperenunlu/SpaceInvadersNoFrameskip-v4-dqn_atari/raw/main/uv.lock
|
34 |
+
uv run dqn_atari.py
|
35 |
+
```
|
36 |
+
|
37 |
+
# Hyperparameters
|
38 |
+
```python
|
39 |
+
{'batch_size': 32,
|
40 |
+
'buffer_size': 1_000_000,
|
41 |
+
'env_id': 'SpaceInvadersNoFrameskip-v4',
|
42 |
+
'eval_episodes': 10,
|
43 |
+
'evaluate': True,
|
44 |
+
'exp_name': 'dqn_atari',
|
45 |
+
'exploration_fraction': 0.1,
|
46 |
+
'final_exploration': 0.01,
|
47 |
+
'gamma': 0.99,
|
48 |
+
'hf_entity': 'alperenunlu',
|
49 |
+
'initial_exploration': 1,
|
50 |
+
'learning_rate': 0.0001,
|
51 |
+
'learning_start': 80_000,
|
52 |
+
'log_interval': 100,
|
53 |
+
'n_envs': 8,
|
54 |
+
'push_model': True,
|
55 |
+
'save_times': 10,
|
56 |
+
'seed': 0,
|
57 |
+
'target_network_update_frequency': 1_000,
|
58 |
+
'tau': 1.0,
|
59 |
+
'total_timesteps': 10_000_000,
|
60 |
+
'train_frequency': 4,
|
61 |
+
'video_capture_frequency': 5}
|
62 |
+
```
|
63 |
+
|
dqn_atari.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import time
|
4 |
+
import warnings
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from datetime import datetime
|
7 |
+
from typing import Any, Callable, SupportsFloat
|
8 |
+
|
9 |
+
import ale_py # noqa: F401
|
10 |
+
import gymnasium as gym
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.optim as optim
|
16 |
+
import tyro
|
17 |
+
from safetensors.torch import save_model
|
18 |
+
from torch.utils.tensorboard import SummaryWriter
|
19 |
+
from tqdm.auto import tqdm
|
20 |
+
|
21 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
22 |
+
|
23 |
+
device = torch.device(
|
24 |
+
"cuda"
|
25 |
+
if torch.cuda.is_available()
|
26 |
+
else "mps"
|
27 |
+
if torch.backends.mps.is_available()
|
28 |
+
else "cpu"
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class HyperParams:
|
34 |
+
env_id: str = "SpaceInvadersNoFrameskip-v4"
|
35 |
+
"""The ID of the environment to train on."""
|
36 |
+
exp_name: str = os.path.basename(__file__)[: -len(".py")]
|
37 |
+
"""The name of the experiment, used for saving models and logs."""
|
38 |
+
n_envs: int = 8
|
39 |
+
"""The number of parallel environments to run."""
|
40 |
+
seed: int = 0
|
41 |
+
"""The random seed for reproducibility."""
|
42 |
+
total_timesteps: int = 10_000_000
|
43 |
+
"""The total number of timesteps to train the agent."""
|
44 |
+
buffer_size: int = 1_000_000
|
45 |
+
"""The size of the replay buffer to store transitions."""
|
46 |
+
video_capture_frequency: int = 5
|
47 |
+
"""The interval (in episodes) to record videos of the agent's performance."""
|
48 |
+
|
49 |
+
initial_exploration: float = 1
|
50 |
+
"""The initial exploration rate for the epsilon-greedy policy."""
|
51 |
+
final_exploration: float = 0.01
|
52 |
+
"""The final exploration rate after annealing."""
|
53 |
+
exploration_fraction: float = 0.1
|
54 |
+
"""The fraction of total timesteps over which to anneal the exploration rate."""
|
55 |
+
|
56 |
+
learning_start: int = 80_000
|
57 |
+
"""The number of timesteps before starting to learn."""
|
58 |
+
train_frequency: int = 4
|
59 |
+
"""The frequency (in timesteps) to update the Q-network."""
|
60 |
+
batch_size: int = 32
|
61 |
+
"""The batch size for sampling from the replay buffer."""
|
62 |
+
gamma: float = 0.99
|
63 |
+
"""The discount factor (gamma) for future rewards."""
|
64 |
+
learning_rate: float = 1e-4
|
65 |
+
"""The learning rate for the optimizer."""
|
66 |
+
target_network_update_frequency: int = 1_000
|
67 |
+
"""The frequency (in timesteps) to update the target network."""
|
68 |
+
tau: float = 1.0
|
69 |
+
"""The rate at which to update the target network towards the Q-network."""
|
70 |
+
|
71 |
+
log_interval: int = 100
|
72 |
+
"""The interval (in timesteps) to log training statistics."""
|
73 |
+
save_times: int = 10
|
74 |
+
"""The number of times to save the model during training."""
|
75 |
+
|
76 |
+
evaluate: bool = True
|
77 |
+
"""Whether to evaluate the agent after training."""
|
78 |
+
eval_episodes: int = 10
|
79 |
+
"""The number of episodes to run for evaluation."""
|
80 |
+
|
81 |
+
push_model: bool = True
|
82 |
+
hf_entity: str = "alperenunlu"
|
83 |
+
|
84 |
+
|
85 |
+
class ReplayBuffer:
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
buffer_size: int,
|
89 |
+
observation_space: gym.Space,
|
90 |
+
action_space: gym.Space,
|
91 |
+
device: torch.device | str = "auto",
|
92 |
+
n_envs: int = 1,
|
93 |
+
optimize_memory_usage: bool = True,
|
94 |
+
) -> None:
|
95 |
+
self.buffer_size = max(buffer_size // n_envs, 1)
|
96 |
+
self.n_envs = n_envs
|
97 |
+
self.optimize_memory_usage = optimize_memory_usage
|
98 |
+
|
99 |
+
self.obs_shape = self.get_obs_shape(observation_space)
|
100 |
+
self.action_dim = self.get_action_dim(action_space)
|
101 |
+
|
102 |
+
self.device = self.get_device(device)
|
103 |
+
|
104 |
+
self.observations = np.zeros(
|
105 |
+
(self.buffer_size, self.n_envs, *self.obs_shape),
|
106 |
+
dtype=observation_space.dtype,
|
107 |
+
)
|
108 |
+
if not self.optimize_memory_usage:
|
109 |
+
self.next_observations = np.zeros(
|
110 |
+
(self.buffer_size, self.n_envs, *self.obs_shape),
|
111 |
+
dtype=observation_space.dtype,
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
self.next_observations = None
|
115 |
+
|
116 |
+
self.actions = np.zeros(
|
117 |
+
(self.buffer_size, self.n_envs, self.action_dim),
|
118 |
+
dtype=action_space.dtype,
|
119 |
+
)
|
120 |
+
self.rewards = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
|
121 |
+
self.dones = np.zeros((self.buffer_size, self.n_envs), dtype=np.float32)
|
122 |
+
|
123 |
+
self.index = 0
|
124 |
+
self.size = 0
|
125 |
+
|
126 |
+
def add(
|
127 |
+
self,
|
128 |
+
obs: np.ndarray,
|
129 |
+
next_obs: np.ndarray,
|
130 |
+
actions: np.ndarray,
|
131 |
+
rewards: np.ndarray,
|
132 |
+
dones: np.ndarray,
|
133 |
+
) -> None:
|
134 |
+
"""Add a new transition to the replay buffer."""
|
135 |
+
self.observations[self.index] = np.asarray(obs)
|
136 |
+
|
137 |
+
if self.optimize_memory_usage:
|
138 |
+
# Store next_obs at the *next* slot to save memory
|
139 |
+
self.observations[(self.index + 1) % self.buffer_size] = np.asarray(
|
140 |
+
next_obs
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
self.next_observations[self.index] = np.asarray(next_obs)
|
144 |
+
|
145 |
+
self.actions[self.index] = np.asarray(actions).reshape(
|
146 |
+
self.n_envs, self.action_dim
|
147 |
+
)
|
148 |
+
self.rewards[self.index] = np.asarray(rewards)
|
149 |
+
self.dones[self.index] = np.asarray(dones)
|
150 |
+
|
151 |
+
self.index = (self.index + 1) % self.buffer_size
|
152 |
+
self.size = min(self.size + 1, self.buffer_size)
|
153 |
+
|
154 |
+
def sample(self, batch_size: int) -> dict[str, torch.Tensor]:
|
155 |
+
"""Sample a batch of data from the replay buffer."""
|
156 |
+
if not self.optimize_memory_usage:
|
157 |
+
batch_idx = np.random.randint(0, self.size, size=batch_size)
|
158 |
+
else:
|
159 |
+
# Do not sample the write index because its (obs,next_obs) pair is invalid
|
160 |
+
if self.size == self.buffer_size:
|
161 |
+
batch_idx = (
|
162 |
+
np.random.randint(1, self.buffer_size, size=batch_size) + self.index
|
163 |
+
) % self.buffer_size
|
164 |
+
else:
|
165 |
+
batch_idx = np.random.randint(0, self.index, size=batch_size)
|
166 |
+
|
167 |
+
env_idx = np.random.randint(0, self.n_envs, size=batch_size)
|
168 |
+
|
169 |
+
if self.optimize_memory_usage:
|
170 |
+
next_obs = self.observations[
|
171 |
+
(batch_idx + 1) % self.buffer_size, env_idx, ...
|
172 |
+
]
|
173 |
+
else:
|
174 |
+
next_obs = self.next_observations[batch_idx, env_idx, ...]
|
175 |
+
|
176 |
+
data = dict(
|
177 |
+
obs=self.observations[batch_idx, env_idx, ...],
|
178 |
+
next_obs=next_obs,
|
179 |
+
actions=self.actions[batch_idx, env_idx, ...],
|
180 |
+
rewards=self.rewards[batch_idx, env_idx, ...],
|
181 |
+
dones=self.dones[batch_idx, env_idx, ...],
|
182 |
+
)
|
183 |
+
return self.to_torch(data)
|
184 |
+
|
185 |
+
def to_torch(self, data: dict[str, np.ndarray]) -> dict[str, torch.Tensor]:
|
186 |
+
"""Convert numpy arrays to torch tensors and move them to the specified device."""
|
187 |
+
tensor_data = dict()
|
188 |
+
for k, v in data.items():
|
189 |
+
tensor_data[k] = torch.from_numpy(v).to(device=self.device)
|
190 |
+
return tensor_data
|
191 |
+
|
192 |
+
@staticmethod
|
193 |
+
def get_device(device: torch.device | str = "auto") -> torch.device:
|
194 |
+
"""Get the device to use for computations."""
|
195 |
+
if device == "auto":
|
196 |
+
return torch.device(
|
197 |
+
"cuda"
|
198 |
+
if torch.cuda.is_available()
|
199 |
+
else "mps"
|
200 |
+
if torch.backends.mps.is_available()
|
201 |
+
else "cpu"
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
return torch.device(device)
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def get_obs_shape(
|
208 |
+
observation_space: gym.Space,
|
209 |
+
) -> tuple[int, ...]:
|
210 |
+
"""Get the shape of the observation space."""
|
211 |
+
if isinstance(observation_space, gym.spaces.Box):
|
212 |
+
return observation_space.shape
|
213 |
+
elif isinstance(observation_space, gym.spaces.Discrete):
|
214 |
+
return (1,)
|
215 |
+
elif isinstance(observation_space, gym.spaces.MultiDiscrete):
|
216 |
+
return (int(len(observation_space.nvec)),)
|
217 |
+
elif isinstance(observation_space, gym.spaces.MultiBinary):
|
218 |
+
return observation_space.shape
|
219 |
+
else:
|
220 |
+
raise NotImplementedError(
|
221 |
+
f"{observation_space} observation space is not supported"
|
222 |
+
)
|
223 |
+
|
224 |
+
@staticmethod
|
225 |
+
def get_action_dim(action_space: gym.spaces.Space) -> int:
|
226 |
+
"""Get the dimension of the action space."""
|
227 |
+
if isinstance(action_space, gym.spaces.Box):
|
228 |
+
return int(np.prod(action_space.shape))
|
229 |
+
elif isinstance(action_space, gym.spaces.Discrete):
|
230 |
+
return 1
|
231 |
+
elif isinstance(action_space, gym.spaces.MultiDiscrete):
|
232 |
+
return int(len(action_space.nvec))
|
233 |
+
else:
|
234 |
+
raise NotImplementedError(f"{action_space} action space is not supported")
|
235 |
+
|
236 |
+
|
237 |
+
class FireResetEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
238 |
+
"""
|
239 |
+
Take action on reset for environments that are fixed until firing.
|
240 |
+
|
241 |
+
:param env: Environment to wrap
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(self, env: gym.Env) -> None:
|
245 |
+
super().__init__(env)
|
246 |
+
assert env.unwrapped.get_action_meanings()[1] == "FIRE" # type: ignore[attr-defined]
|
247 |
+
assert len(env.unwrapped.get_action_meanings()) >= 3 # type: ignore[attr-defined]
|
248 |
+
|
249 |
+
def reset(self, **kwargs) -> tuple[np.ndarray, dict[str, Any]]:
|
250 |
+
self.env.reset(**kwargs)
|
251 |
+
obs, _, terminated, truncated, info = self.env.step(1)
|
252 |
+
if terminated or truncated:
|
253 |
+
self.env.reset(**kwargs)
|
254 |
+
obs, _, terminated, truncated, info = self.env.step(2)
|
255 |
+
if terminated or truncated:
|
256 |
+
self.env.reset(**kwargs)
|
257 |
+
return obs, info
|
258 |
+
|
259 |
+
|
260 |
+
class EpisodicLifeEnv(gym.Wrapper[np.ndarray, int, np.ndarray, int]):
|
261 |
+
"""
|
262 |
+
Make end-of-life == end-of-episode, but only reset on true game over.
|
263 |
+
Done by DeepMind for the DQN and co. since it helps value estimation.
|
264 |
+
|
265 |
+
:param env: Environment to wrap
|
266 |
+
"""
|
267 |
+
|
268 |
+
def __init__(self, env: gym.Env) -> None:
|
269 |
+
super().__init__(env)
|
270 |
+
self.lives = 0
|
271 |
+
self.was_real_done = True
|
272 |
+
|
273 |
+
def step(
|
274 |
+
self, action: int
|
275 |
+
) -> tuple[np.ndarray, SupportsFloat, bool, bool, dict[str, Any]]:
|
276 |
+
obs, reward, terminated, truncated, info = self.env.step(action)
|
277 |
+
self.was_real_done = terminated or truncated
|
278 |
+
lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
279 |
+
if 0 < lives < self.lives:
|
280 |
+
terminated = True
|
281 |
+
self.lives = lives
|
282 |
+
return obs, reward, terminated, truncated, info
|
283 |
+
|
284 |
+
def reset(self, **kwargs) -> tuple[np.ndarray, dict[str, Any]]:
|
285 |
+
"""
|
286 |
+
Calls the Gym environment reset, only when lives are exhausted.
|
287 |
+
This way all states are still reachable even though lives are episodic,
|
288 |
+
and the learner need not know about any of this behind-the-scenes.
|
289 |
+
|
290 |
+
:param kwargs: Extra keywords passed to env.reset() call
|
291 |
+
:return: the first observation of the environment
|
292 |
+
"""
|
293 |
+
if self.was_real_done:
|
294 |
+
obs, info = self.env.reset(**kwargs)
|
295 |
+
else:
|
296 |
+
obs, _, terminated, truncated, info = self.env.step(0)
|
297 |
+
|
298 |
+
if terminated or truncated:
|
299 |
+
obs, info = self.env.reset(**kwargs)
|
300 |
+
self.lives = self.env.unwrapped.ale.lives() # type: ignore[attr-defined]
|
301 |
+
return obs, info
|
302 |
+
|
303 |
+
|
304 |
+
def make_env(
|
305 |
+
env_id: str, seed: int, idx: int, video_capture_frequency: int, run_name: str
|
306 |
+
) -> Callable[[], gym.Env]:
|
307 |
+
"""Create a gym environment with specific configurations.
|
308 |
+
|
309 |
+
Args:
|
310 |
+
env_id (str): The ID of the environment to create.
|
311 |
+
seed (int): The seed for random number generation.
|
312 |
+
idx (int): The index of the environment (for vectorized environments).
|
313 |
+
video_freq (int): Frequency of recording videos (0 to disable).
|
314 |
+
run_name (str): The name of the run for saving videos.
|
315 |
+
|
316 |
+
Returns:
|
317 |
+
Callable[[], gym.Env]: A function that returns the configured environment.
|
318 |
+
"""
|
319 |
+
|
320 |
+
def _thunk() -> gym.Env:
|
321 |
+
if video_capture_frequency > 0 and idx == 0:
|
322 |
+
env = gym.make(env_id, render_mode="rgb_array")
|
323 |
+
env = gym.wrappers.RecordVideo(
|
324 |
+
env,
|
325 |
+
video_folder=f"videos/{run_name}",
|
326 |
+
episode_trigger=lambda x: x % video_capture_frequency == 0,
|
327 |
+
name_prefix=env_id,
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
env = gym.make(env_id)
|
331 |
+
env = gym.wrappers.RecordEpisodeStatistics(env)
|
332 |
+
env = gym.wrappers.AtariPreprocessing(
|
333 |
+
env,
|
334 |
+
noop_max=30,
|
335 |
+
frame_skip=4,
|
336 |
+
screen_size=(84, 84),
|
337 |
+
terminal_on_life_loss=False,
|
338 |
+
grayscale_obs=True,
|
339 |
+
grayscale_newaxis=False,
|
340 |
+
scale_obs=False,
|
341 |
+
)
|
342 |
+
env = EpisodicLifeEnv(env)
|
343 |
+
if "FIRE" in env.unwrapped.get_action_meanings(): # type: ignore[attr-defined]
|
344 |
+
env = FireResetEnv(env)
|
345 |
+
env = gym.wrappers.ClipReward(env, -1, +1)
|
346 |
+
env = gym.wrappers.FrameStackObservation(env, stack_size=4)
|
347 |
+
env.action_space.seed(seed)
|
348 |
+
return env
|
349 |
+
|
350 |
+
return _thunk
|
351 |
+
|
352 |
+
|
353 |
+
class QNetwork(nn.Module):
|
354 |
+
def __init__(self, env) -> None:
|
355 |
+
super().__init__()
|
356 |
+
self.network = nn.Sequential(
|
357 |
+
nn.Conv2d(4, 32, 8, stride=4),
|
358 |
+
nn.ReLU(inplace=True),
|
359 |
+
nn.Conv2d(32, 64, 4, stride=2),
|
360 |
+
nn.ReLU(inplace=True),
|
361 |
+
nn.Conv2d(64, 64, 3, stride=1),
|
362 |
+
nn.ReLU(inplace=True),
|
363 |
+
nn.Flatten(),
|
364 |
+
nn.Linear(7 * 7 * 64, 512),
|
365 |
+
nn.ReLU(inplace=True),
|
366 |
+
nn.Linear(512, env.single_action_space.n),
|
367 |
+
)
|
368 |
+
|
369 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
370 |
+
return self.network(x / 255.0)
|
371 |
+
|
372 |
+
|
373 |
+
def linear_schedule(t: int, start_e: float, end_e: float, duration: int) -> float:
|
374 |
+
"""Linear annealing from start_e to end_e over duration steps.
|
375 |
+
|
376 |
+
Args:
|
377 |
+
t (int): Current step.
|
378 |
+
start_e (float): Initial exploration rate.
|
379 |
+
end_e (float): Final exploration rate.
|
380 |
+
duration (float): Duration of the annealing in steps.
|
381 |
+
|
382 |
+
Returns:
|
383 |
+
float: The exploration rate at step t.
|
384 |
+
"""
|
385 |
+
slope = (end_e - start_e) / duration
|
386 |
+
return max(slope * t + start_e, end_e)
|
387 |
+
|
388 |
+
|
389 |
+
def main() -> None:
|
390 |
+
args = tyro.cli(HyperParams)
|
391 |
+
run_name = f"{args.env_id}_{args.exp_name.replace('/', '_')}_{args.seed}_{datetime.now().strftime('%y%m%d_%H%M%S')}"
|
392 |
+
print(run_name)
|
393 |
+
writer = SummaryWriter(f"runs/{run_name}")
|
394 |
+
keyval_str = "\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])
|
395 |
+
writer.add_text(
|
396 |
+
"hyperparameters",
|
397 |
+
f"|param|value|\n|-|-|\n{keyval_str}",
|
398 |
+
)
|
399 |
+
|
400 |
+
random.seed(args.seed)
|
401 |
+
np.random.seed(args.seed)
|
402 |
+
torch.manual_seed(args.seed)
|
403 |
+
|
404 |
+
envs = gym.vector.AsyncVectorEnv(
|
405 |
+
[
|
406 |
+
make_env(
|
407 |
+
args.env_id, args.seed + i, i, args.video_capture_frequency, run_name
|
408 |
+
)
|
409 |
+
for i in range(int(args.n_envs))
|
410 |
+
],
|
411 |
+
autoreset_mode=gym.vector.AutoresetMode.DISABLED,
|
412 |
+
)
|
413 |
+
assert isinstance(envs.single_action_space, gym.spaces.Discrete)
|
414 |
+
envs.action_space.seed(args.seed)
|
415 |
+
|
416 |
+
q_network = QNetwork(envs).to(device)
|
417 |
+
optimizer = optim.Adam(q_network.parameters(), lr=args.learning_rate)
|
418 |
+
target_network = QNetwork(envs).to(device)
|
419 |
+
target_network.load_state_dict(q_network.state_dict())
|
420 |
+
target_network.eval()
|
421 |
+
|
422 |
+
rb = ReplayBuffer(
|
423 |
+
args.buffer_size,
|
424 |
+
envs.single_observation_space,
|
425 |
+
envs.single_action_space,
|
426 |
+
device=device,
|
427 |
+
n_envs=envs.num_envs,
|
428 |
+
)
|
429 |
+
|
430 |
+
start_time = time.time()
|
431 |
+
|
432 |
+
obs, _ = envs.reset(seed=args.seed)
|
433 |
+
step_pbar = tqdm(total=args.total_timesteps)
|
434 |
+
postfix_dict = dict()
|
435 |
+
for step in range(0, args.total_timesteps, envs.num_envs):
|
436 |
+
epsilon = linear_schedule(
|
437 |
+
step,
|
438 |
+
args.initial_exploration,
|
439 |
+
args.final_exploration,
|
440 |
+
int(args.total_timesteps * args.exploration_fraction),
|
441 |
+
)
|
442 |
+
writer.add_scalar("charts/epsilon", epsilon, step)
|
443 |
+
postfix_dict.update(e=epsilon)
|
444 |
+
|
445 |
+
with torch.no_grad():
|
446 |
+
q_values = q_network(torch.from_numpy(obs).to(device))
|
447 |
+
greedy_actions = torch.argmax(q_values, dim=1).cpu().numpy()
|
448 |
+
|
449 |
+
randn_actions = envs.action_space.sample()
|
450 |
+
mask_actions = np.random.rand(envs.num_envs) < epsilon
|
451 |
+
actions = np.where(mask_actions, randn_actions, greedy_actions)
|
452 |
+
|
453 |
+
next_obs, rewards, terminations, truncations, infos = envs.step(actions)
|
454 |
+
|
455 |
+
if "episode" in infos:
|
456 |
+
mask = infos["_episode"]
|
457 |
+
r_mean = infos["episode"]["r"][mask].mean()
|
458 |
+
l_mean = infos["episode"]["l"][mask].mean()
|
459 |
+
|
460 |
+
writer.add_scalar("charts/episodic_return", r_mean, step)
|
461 |
+
writer.add_scalar("charts/episodic_length", l_mean, step)
|
462 |
+
postfix_dict.update(
|
463 |
+
r=r_mean,
|
464 |
+
l=l_mean,
|
465 |
+
)
|
466 |
+
|
467 |
+
rb.add(obs, next_obs, actions, rewards, terminations)
|
468 |
+
|
469 |
+
dones = np.logical_or(terminations, truncations)
|
470 |
+
if dones.any():
|
471 |
+
obs, _ = envs.reset(options={"reset_mask": dones})
|
472 |
+
else:
|
473 |
+
obs = next_obs
|
474 |
+
|
475 |
+
for parallel_step in range(
|
476 |
+
step, min(step + envs.num_envs, args.total_timesteps)
|
477 |
+
):
|
478 |
+
if parallel_step > args.learning_start:
|
479 |
+
if parallel_step % args.train_frequency == 0:
|
480 |
+
data = rb.sample(args.batch_size)
|
481 |
+
with torch.no_grad():
|
482 |
+
target_max, _ = target_network(data["next_obs"]).max(dim=1)
|
483 |
+
td_target = data[
|
484 |
+
"rewards"
|
485 |
+
].flatten() + args.gamma * target_max * (
|
486 |
+
1 - data["dones"].flatten()
|
487 |
+
)
|
488 |
+
q_val = q_network(data["obs"]).gather(1, data["actions"]).squeeze()
|
489 |
+
loss = F.smooth_l1_loss(q_val, td_target)
|
490 |
+
|
491 |
+
if step % args.log_interval < envs.num_envs:
|
492 |
+
writer.add_scalar("losses/td_loss", loss, parallel_step)
|
493 |
+
writer.add_scalar(
|
494 |
+
"losses/q_values", q_val.mean().item(), parallel_step
|
495 |
+
)
|
496 |
+
writer.add_scalar(
|
497 |
+
"charts/SPS",
|
498 |
+
step // (time.time() - start_time),
|
499 |
+
parallel_step,
|
500 |
+
)
|
501 |
+
postfix_dict.update(
|
502 |
+
td_loss=loss.item(),
|
503 |
+
q_val_mean=q_val.mean().item(),
|
504 |
+
sps=step // (time.time() - start_time),
|
505 |
+
)
|
506 |
+
|
507 |
+
optimizer.zero_grad()
|
508 |
+
loss.backward()
|
509 |
+
optimizer.step()
|
510 |
+
|
511 |
+
if parallel_step % args.target_network_update_frequency == 0:
|
512 |
+
for target_network_param, q_network_param in zip(
|
513 |
+
target_network.parameters(), q_network.parameters()
|
514 |
+
):
|
515 |
+
target_network_param.data.lerp_(q_network_param.data, args.tau)
|
516 |
+
|
517 |
+
if parallel_step % (args.total_timesteps // args.save_times) == 0:
|
518 |
+
save_model(
|
519 |
+
model=q_network,
|
520 |
+
filename=f"runs/{run_name}/{args.exp_name}_{step}.safetensors",
|
521 |
+
)
|
522 |
+
step_pbar.set_postfix(postfix_dict)
|
523 |
+
step_pbar.update(envs.num_envs)
|
524 |
+
envs.close()
|
525 |
+
step_pbar.close()
|
526 |
+
|
527 |
+
if args.evaluate:
|
528 |
+
run_name_eval = f"{run_name}_eval"
|
529 |
+
final_model_path = f"runs/{run_name}/{args.exp_name}_final.safetensors"
|
530 |
+
save_model(model=q_network, filename=final_model_path)
|
531 |
+
from evals.dqn_eval import evaluate
|
532 |
+
|
533 |
+
episode_rewards = evaluate(
|
534 |
+
final_model_path=final_model_path,
|
535 |
+
make_env=make_env,
|
536 |
+
env_id=args.env_id,
|
537 |
+
run_name_eval=run_name_eval,
|
538 |
+
QNetwork=QNetwork,
|
539 |
+
device=device,
|
540 |
+
eval_episodes=args.eval_episodes,
|
541 |
+
epsilon=args.final_exploration,
|
542 |
+
)
|
543 |
+
for i, r in enumerate(episode_rewards):
|
544 |
+
writer.add_scalar("eval/episodic_return_eval", r, i)
|
545 |
+
|
546 |
+
if args.push_model:
|
547 |
+
from utils import push_model
|
548 |
+
|
549 |
+
push_model(
|
550 |
+
args=args,
|
551 |
+
episode_rewards=episode_rewards,
|
552 |
+
algo_name="DQN",
|
553 |
+
run_path=f"runs/{run_name}",
|
554 |
+
video_folder_path=f"videos/{run_name_eval}",
|
555 |
+
)
|
556 |
+
|
557 |
+
writer.close()
|
558 |
+
|
559 |
+
|
560 |
+
if __name__ == "__main__":
|
561 |
+
main()
|
dqn_atari_1000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7dd068380a83b737c2f6ba15ce7b54742a97e328733448bb6052bcc76d1abac
|
3 |
+
size 6749632
|
dqn_atari_2000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4ed5df14bf26a840e1090978e037112bbb02a0f56d3ef229d1c8885082abc1e
|
3 |
+
size 6749632
|
dqn_atari_3000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f51ada39ff7512a9180606dc367d7e5fe7a7c02692f645e3f5f91d1e937b3e4
|
3 |
+
size 6749632
|
dqn_atari_4000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bfc97d59160b805d1dd56a0372d8634dbcb7fb17b7ba1ba7239c533a5f7a001
|
3 |
+
size 6749632
|
dqn_atari_5000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:852b6388c16dec1cece86432c9cb1b159263b6a7d33ee84a212de7685cf3148c
|
3 |
+
size 6749632
|
dqn_atari_6000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33978695e05d872451f0262f3a3381da1e36fa721de54e98bd3850740612e936
|
3 |
+
size 6749632
|
dqn_atari_7000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6175016bb27fa7fd4b65268a1e9dd3791590ef11525f8805c01a608ba1e1a389
|
3 |
+
size 6749632
|
dqn_atari_8000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e74417b7e7fc1025fb6ab60bafda4b26eacb59f5207893f9930f07a8488f1977
|
3 |
+
size 6749632
|
dqn_atari_9000000.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a416598792b7b6968310f07ad932efdb8e12ba5eee63ce13e0df5f40d06703f
|
3 |
+
size 6749632
|
dqn_atari_final.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6caadb9e62f0806a480f84d4c90ec8f3e7b96dd1f1fb51b7c75223cb936222a2
|
3 |
+
size 6749632
|
events.out.tfevents.1755876604.dc81b9906985.2178.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b4ac76ec60c8469e0d0183cefc32741464287ced7fec20e2daca8bbd816b6f8
|
3 |
+
size 101547150
|
hyperparameters.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"env_id": "SpaceInvadersNoFrameskip-v4",
|
3 |
+
"exp_name": "dqn_atari",
|
4 |
+
"n_envs": 8,
|
5 |
+
"seed": 0,
|
6 |
+
"total_timesteps": 10000000,
|
7 |
+
"buffer_size": 1000000,
|
8 |
+
"video_capture_frequency": 5,
|
9 |
+
"initial_exploration": 1,
|
10 |
+
"final_exploration": 0.01,
|
11 |
+
"exploration_fraction": 0.1,
|
12 |
+
"learning_start": 80000,
|
13 |
+
"train_frequency": 4,
|
14 |
+
"batch_size": 32,
|
15 |
+
"gamma": 0.99,
|
16 |
+
"learning_rate": 0.0001,
|
17 |
+
"target_network_update_frequency": 1000,
|
18 |
+
"tau": 1.0,
|
19 |
+
"log_interval": 100,
|
20 |
+
"save_times": 10,
|
21 |
+
"evaluate": true,
|
22 |
+
"eval_episodes": 10,
|
23 |
+
"push_model": true,
|
24 |
+
"hf_entity": "alperenunlu"
|
25 |
+
}
|
pyproject.toml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "rlhell"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "RL Implementations Without Dependency Hell Cutting Edge Versions and Vectorized Training"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"gymnasium[all]>=1.2.0",
|
9 |
+
"huggingface-hub>=0.34.4",
|
10 |
+
"safetensors>=0.6.2",
|
11 |
+
"swig>=4.3.1",
|
12 |
+
"tensorboard>=2.20.0",
|
13 |
+
"torch>=2.8.0",
|
14 |
+
"tqdm>=4.67.1",
|
15 |
+
"tyro>=0.9.28",
|
16 |
+
]
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aa46fb3860c1865495e256b64def56e973ca1029ae0aa5b29d0eb1b3cc9fcf4
|
3 |
+
size 1390433
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-0.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0aa46fb3860c1865495e256b64def56e973ca1029ae0aa5b29d0eb1b3cc9fcf4
|
3 |
+
size 1390433
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81058e6ce5baa8ba1699e95f7f88c12356292f47f8744e5f248ccd425712ab56
|
3 |
+
size 622516
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-2.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd804e02102171a0ebf380b45108fee1fc2c631d2e97cf7e58c7a0ab6420059
|
3 |
+
size 670602
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-3.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b3332e807ee00821010ebfca57343a8bba4f04f85449d1f0bd672212b130f5d
|
3 |
+
size 1259808
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-4.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5accd7fb013d92d5ec6ffb0d200693cc316f21f54a1ca7bae593087303f6baa
|
3 |
+
size 1182288
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-5.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7822ac3dc85aff825689f7022cd6c64ebe64101a4a7e7f5be702c3ebf68731a
|
3 |
+
size 728035
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-6.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a2c826830c9e0bea8736b213fb57792676fe16191580d50727f65e40ec1871f
|
3 |
+
size 1118185
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-7.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0660e438dfacf48485940b7388833d7261cfe9b261bf33333aa1db39f8bfae08
|
3 |
+
size 805407
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-8.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1c041e5c76f0bc0c8ed6fd433557af20613544e4455e8ae9e5c1ef9a00675b6
|
3 |
+
size 593165
|
videos/SpaceInvadersNoFrameskip-v4_dqn_atari_0_250822_153004_eval/SpaceInvadersNoFrameskip-v4-episode-9.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99016ba1754bbf677baf13297f08aa533f18072271769d5aa8112da36e7d78e1
|
3 |
+
size 903444
|