Upload configuration_phi3.py with huggingface_hub
Browse files- configuration_phi3.py +226 -0
configuration_phi3.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""Phi-3 model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Phi3Config(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
| 28 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 29 |
+
defaults will yield a similar configuration to that of the
|
| 30 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
| 37 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
| 38 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
| 39 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 40 |
+
Dimension of the hidden representations.
|
| 41 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 42 |
+
Dimension of the MLP representations.
|
| 43 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 44 |
+
Number of hidden layers in the Transformer decoder.
|
| 45 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 47 |
+
num_key_value_heads (`int`, *optional*):
|
| 48 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 49 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 50 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 51 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 52 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 53 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 54 |
+
`num_attention_heads`.
|
| 55 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 56 |
+
Dropout probability for mlp outputs.
|
| 57 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 58 |
+
The dropout ratio for the embeddings.
|
| 59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
The dropout ratio after computing the attention scores.
|
| 61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 62 |
+
The non-linear activation function (function or string) in the decoder.
|
| 63 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 64 |
+
The maximum sequence length that this model might ever be used with.
|
| 65 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 66 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 67 |
+
original RoPE embeddings when using long scaling.
|
| 68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 70 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 71 |
+
The epsilon value used for the RMSNorm.
|
| 72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 74 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 75 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 76 |
+
Whether to tie weight embeddings
|
| 77 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 78 |
+
The base period of the RoPE embeddings.
|
| 79 |
+
rope_scaling (`dict`, *optional*):
|
| 80 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 81 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
| 82 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 83 |
+
divided by the number of attention heads divided by 2.
|
| 84 |
+
partial_rotary_factor (`float`, *optional*, defaults to 1.0):
|
| 85 |
+
Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
|
| 86 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 87 |
+
The id of the "beginning-of-sequence" token.
|
| 88 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
| 89 |
+
The id of the "end-of-sequence" token.
|
| 90 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
| 91 |
+
The id of the padding token.
|
| 92 |
+
sliding_window (`int`, *optional*):
|
| 93 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 94 |
+
|
| 95 |
+
Example:
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
>>> from transformers import Phi3Model, Phi3Config
|
| 99 |
+
|
| 100 |
+
>>> # Initializing a Phi-3 style configuration
|
| 101 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
| 102 |
+
|
| 103 |
+
>>> # Initializing a model from the configuration
|
| 104 |
+
>>> model = Phi3Model(configuration)
|
| 105 |
+
|
| 106 |
+
>>> # Accessing the model configuration
|
| 107 |
+
>>> configuration = model.config
|
| 108 |
+
```"""
|
| 109 |
+
|
| 110 |
+
model_type = "phi3"
|
| 111 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 112 |
+
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
vocab_size=32064,
|
| 116 |
+
hidden_size=3072,
|
| 117 |
+
intermediate_size=8192,
|
| 118 |
+
num_hidden_layers=32,
|
| 119 |
+
num_attention_heads=32,
|
| 120 |
+
num_key_value_heads=None,
|
| 121 |
+
resid_pdrop=0.0,
|
| 122 |
+
embd_pdrop=0.0,
|
| 123 |
+
attention_dropout=0.0,
|
| 124 |
+
hidden_act="silu",
|
| 125 |
+
max_position_embeddings=4096,
|
| 126 |
+
original_max_position_embeddings=4096,
|
| 127 |
+
initializer_range=0.02,
|
| 128 |
+
rms_norm_eps=1e-5,
|
| 129 |
+
use_cache=True,
|
| 130 |
+
tie_word_embeddings=False,
|
| 131 |
+
rope_theta=10000.0,
|
| 132 |
+
rope_scaling=None,
|
| 133 |
+
partial_rotary_factor=1.0,
|
| 134 |
+
bos_token_id=1,
|
| 135 |
+
eos_token_id=32000,
|
| 136 |
+
pad_token_id=32000,
|
| 137 |
+
sliding_window=None,
|
| 138 |
+
**kwargs,
|
| 139 |
+
):
|
| 140 |
+
self.vocab_size = vocab_size
|
| 141 |
+
self.hidden_size = hidden_size
|
| 142 |
+
self.intermediate_size = intermediate_size
|
| 143 |
+
self.num_hidden_layers = num_hidden_layers
|
| 144 |
+
self.num_attention_heads = num_attention_heads
|
| 145 |
+
|
| 146 |
+
if num_key_value_heads is None:
|
| 147 |
+
num_key_value_heads = num_attention_heads
|
| 148 |
+
|
| 149 |
+
self.num_key_value_heads = num_key_value_heads
|
| 150 |
+
self.resid_pdrop = resid_pdrop
|
| 151 |
+
self.embd_pdrop = embd_pdrop
|
| 152 |
+
self.attention_dropout = attention_dropout
|
| 153 |
+
self.hidden_act = hidden_act
|
| 154 |
+
self.max_position_embeddings = max_position_embeddings
|
| 155 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 156 |
+
self.initializer_range = initializer_range
|
| 157 |
+
self.rms_norm_eps = rms_norm_eps
|
| 158 |
+
self.use_cache = use_cache
|
| 159 |
+
self.rope_theta = rope_theta
|
| 160 |
+
self.rope_scaling = rope_scaling
|
| 161 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 162 |
+
self._rope_scaling_adjustment()
|
| 163 |
+
self._rope_scaling_validation()
|
| 164 |
+
self.sliding_window = sliding_window
|
| 165 |
+
|
| 166 |
+
super().__init__(
|
| 167 |
+
bos_token_id=bos_token_id,
|
| 168 |
+
eos_token_id=eos_token_id,
|
| 169 |
+
pad_token_id=pad_token_id,
|
| 170 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 171 |
+
**kwargs,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
def _rope_scaling_adjustment(self):
|
| 175 |
+
"""
|
| 176 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
| 177 |
+
"""
|
| 178 |
+
if self.rope_scaling is None:
|
| 179 |
+
return
|
| 180 |
+
|
| 181 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 182 |
+
|
| 183 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
| 184 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
| 185 |
+
self.rope_scaling["type"] = "longrope"
|
| 186 |
+
|
| 187 |
+
def _rope_scaling_validation(self):
|
| 188 |
+
"""
|
| 189 |
+
Validate the `rope_scaling` configuration.
|
| 190 |
+
"""
|
| 191 |
+
if self.rope_scaling is None:
|
| 192 |
+
return
|
| 193 |
+
|
| 194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
| 195 |
+
raise ValueError(
|
| 196 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
| 197 |
+
f"got {self.rope_scaling}"
|
| 198 |
+
)
|
| 199 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 200 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
| 201 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
| 202 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
| 203 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
| 204 |
+
if not (
|
| 205 |
+
isinstance(rope_scaling_short_factor, list)
|
| 206 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
| 207 |
+
):
|
| 208 |
+
raise ValueError(
|
| 209 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
| 210 |
+
)
|
| 211 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
| 212 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
| 213 |
+
raise ValueError(
|
| 214 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
| 215 |
+
)
|
| 216 |
+
if not (
|
| 217 |
+
isinstance(rope_scaling_long_factor, list)
|
| 218 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
| 219 |
+
):
|
| 220 |
+
raise ValueError(
|
| 221 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
| 222 |
+
)
|
| 223 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
| 226 |
+
)
|