| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""EXAONE model configuration""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.configuration_utils import PretrainedConfig | 
					
					
						
						| 
							 | 
						from transformers.utils import logging | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ExaoneConfig(PretrainedConfig): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to | 
					
					
						
						| 
							 | 
						    instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a | 
					
					
						
						| 
							 | 
						    configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model | 
					
					
						
						| 
							 | 
						    outputs. Read the documentation from [`PretrainedConfig`] for more information. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        vocab_size (`int`, *optional*, defaults to 102400): | 
					
					
						
						| 
							 | 
						            Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the | 
					
					
						
						| 
							 | 
						            `inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model. | 
					
					
						
						| 
							 | 
						            Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of | 
					
					
						
						| 
							 | 
						            [`ExaoneModel`]. | 
					
					
						
						| 
							 | 
						        max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
					
						
						| 
							 | 
						            The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
					
						
						| 
							 | 
						            just in case (e.g., 512 or 1024 or 2048). | 
					
					
						
						| 
							 | 
						        hidden_size (`int`, *optional*, defaults to 2048): | 
					
					
						
						| 
							 | 
						            Dimensionality of the encoder layers and the pooler layer. | 
					
					
						
						| 
							 | 
						        num_layers (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of hidden layers in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        num_attention_heads (`int`, *optional*, defaults to 32): | 
					
					
						
						| 
							 | 
						            Number of attention heads for each attention layer in the Transformer decoder. | 
					
					
						
						| 
							 | 
						        num_key_value_heads (`int`, *optional*): | 
					
					
						
						| 
							 | 
						            This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
					
						
						| 
							 | 
						            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
					
						
						| 
							 | 
						            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
					
						
						| 
							 | 
						            by meanpooling all the original heads within that group. For more details checkout [this | 
					
					
						
						| 
							 | 
						            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
					
						
						| 
							 | 
						            `num_attention_heads`. | 
					
					
						
						| 
							 | 
						        intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`): | 
					
					
						
						| 
							 | 
						            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | 
					
					
						
						| 
							 | 
						        activation_function (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
					
						
						| 
							 | 
						            The non-linear activation function (function or string) in the decoder. | 
					
					
						
						| 
							 | 
						        rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
					
						
						| 
							 | 
						            The base period of the RoPE embeddings. | 
					
					
						
						| 
							 | 
						        rope_scaling (`Dict`, *optional*): | 
					
					
						
						| 
							 | 
						            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | 
					
					
						
						| 
							 | 
						            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | 
					
					
						
						| 
							 | 
						            accordingly. | 
					
					
						
						| 
							 | 
						            Expected contents: | 
					
					
						
						| 
							 | 
						                `rope_type` (`str`): | 
					
					
						
						| 
							 | 
						                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | 
					
					
						
						| 
							 | 
						                    'llama3'], with 'default' being the original RoPE implementation. | 
					
					
						
						| 
							 | 
						                `factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | 
					
					
						
						| 
							 | 
						                    most scaling types, a `factor` of x will enable the model to handle sequences of length x * | 
					
					
						
						| 
							 | 
						                    original maximum pre-trained length. | 
					
					
						
						| 
							 | 
						                `original_max_position_embeddings` (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | 
					
					
						
						| 
							 | 
						                    pretraining. | 
					
					
						
						| 
							 | 
						                `attention_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | 
					
					
						
						| 
							 | 
						                    computation. If unspecified, it defaults to value recommended by the implementation, using the | 
					
					
						
						| 
							 | 
						                    `factor` field to infer the suggested value. | 
					
					
						
						| 
							 | 
						                `beta_fast` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | 
					
					
						
						| 
							 | 
						                    ramp function. If unspecified, it defaults to 32. | 
					
					
						
						| 
							 | 
						                `beta_slow` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | 
					
					
						
						| 
							 | 
						                    ramp function. If unspecified, it defaults to 1. | 
					
					
						
						| 
							 | 
						                `short_factor` (`List[float]`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'longrope'. The scaling factor to be applied to short contexts (< | 
					
					
						
						| 
							 | 
						                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
					
						
						| 
							 | 
						                    size divided by the number of attention heads divided by 2 | 
					
					
						
						| 
							 | 
						                `long_factor` (`List[float]`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'longrope'. The scaling factor to be applied to long contexts (< | 
					
					
						
						| 
							 | 
						                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | 
					
					
						
						| 
							 | 
						                    size divided by the number of attention heads divided by 2 | 
					
					
						
						| 
							 | 
						                `low_freq_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | 
					
					
						
						| 
							 | 
						                `high_freq_factor` (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | 
					
					
						
						| 
							 | 
						        embed_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. | 
					
					
						
						| 
							 | 
						        attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
					
						
						| 
							 | 
						            The dropout ratio for the attention probabilities. | 
					
					
						
						| 
							 | 
						        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | 
					
					
						
						| 
							 | 
						            The epsilon used by the layer normalization layers. | 
					
					
						
						| 
							 | 
						        initializer_range (`float`, *optional*, defaults to 0.02): | 
					
					
						
						| 
							 | 
						            The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						            Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
					
						
						| 
							 | 
						            relevant if ``config.is_decoder=True``. | 
					
					
						
						| 
							 | 
						        bos_token_id (`int`, *optional*, defaults to 0): | 
					
					
						
						| 
							 | 
						            Beginning of stream token id. | 
					
					
						
						| 
							 | 
						        eos_token_id (`int`, *optional*, defaults to 2): | 
					
					
						
						| 
							 | 
						            End of stream token id. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    ```python | 
					
					
						
						| 
							 | 
						    >>> from transformers import EXAONEModel, ExaoneConfig | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a EXAONE configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = ExaoneConfig() | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Initializing a model from configuration | 
					
					
						
						| 
							 | 
						    >>> model = EXAONEModel(configuration) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    >>> # Accessing the model configuration | 
					
					
						
						| 
							 | 
						    >>> configuration = model.config | 
					
					
						
						| 
							 | 
						    ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_type = "exaone" | 
					
					
						
						| 
							 | 
						    keys_to_ignore_at_inference = ["past_key_values"] | 
					
					
						
						| 
							 | 
						    attribute_map = {"num_hidden_layers": "num_layers"} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_size=102400, | 
					
					
						
						| 
							 | 
						        max_position_embeddings=2048, | 
					
					
						
						| 
							 | 
						        hidden_size=2048, | 
					
					
						
						| 
							 | 
						        num_layers=32, | 
					
					
						
						| 
							 | 
						        num_attention_heads=32, | 
					
					
						
						| 
							 | 
						        num_key_value_heads=None, | 
					
					
						
						| 
							 | 
						        intermediate_size=None, | 
					
					
						
						| 
							 | 
						        activation_function="silu", | 
					
					
						
						| 
							 | 
						        rope_theta=10000.0, | 
					
					
						
						| 
							 | 
						        rope_scaling=None, | 
					
					
						
						| 
							 | 
						        embed_dropout=0.0, | 
					
					
						
						| 
							 | 
						        attention_dropout=0.0, | 
					
					
						
						| 
							 | 
						        layer_norm_epsilon=1e-5, | 
					
					
						
						| 
							 | 
						        initializer_range=0.02, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        bos_token_id=0, | 
					
					
						
						| 
							 | 
						        eos_token_id=2, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.vocab_size = vocab_size | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.hidden_size = hidden_size | 
					
					
						
						| 
							 | 
						        self.num_layers = num_layers | 
					
					
						
						| 
							 | 
						        self.num_attention_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.num_layers = num_layers | 
					
					
						
						| 
							 | 
						        if num_key_value_heads is None: | 
					
					
						
						| 
							 | 
						            num_key_value_heads = num_attention_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = num_key_value_heads | 
					
					
						
						| 
							 | 
						        if intermediate_size: | 
					
					
						
						| 
							 | 
						            self.intermediate_size = intermediate_size | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.intermediate_size = hidden_size * 4 | 
					
					
						
						| 
							 | 
						        self.activation_function = activation_function | 
					
					
						
						| 
							 | 
						        self.embed_dropout = embed_dropout | 
					
					
						
						| 
							 | 
						        self.attention_dropout = attention_dropout | 
					
					
						
						| 
							 | 
						        self.layer_norm_epsilon = layer_norm_epsilon | 
					
					
						
						| 
							 | 
						        self.initializer_range = initializer_range | 
					
					
						
						| 
							 | 
						        self.use_cache = use_cache | 
					
					
						
						| 
							 | 
						        self.rope_theta = rope_theta | 
					
					
						
						| 
							 | 
						        self.rope_scaling = rope_scaling | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.bos_token_id = bos_token_id | 
					
					
						
						| 
							 | 
						        self.eos_token_id = eos_token_id | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | 
					
					
						
						| 
							 | 
						
 |