Add files using upload-large-folder tool
Browse files- README.md +45 -0
- config.json +47 -0
- configuration_exaone.py +183 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- model.safetensors.index.json +701 -0
- modeling_exaone.py +1394 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +3222 -0
- vocab.json +0 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,45 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            base_model: LGAI-EXAONE/EXAONE-Deep-2.4B
         | 
| 3 | 
            +
            base_model_relation: finetune
         | 
| 4 | 
            +
            license: other
         | 
| 5 | 
            +
            license_name: exaone
         | 
| 6 | 
            +
            license_link: LICENSE
         | 
| 7 | 
            +
            language:
         | 
| 8 | 
            +
            - en
         | 
| 9 | 
            +
            - ko
         | 
| 10 | 
            +
            tags:
         | 
| 11 | 
            +
            - lg-ai
         | 
| 12 | 
            +
            - exaone
         | 
| 13 | 
            +
            - exaone-deep
         | 
| 14 | 
            +
            - mlx
         | 
| 15 | 
            +
            pipeline_tag: text-generation
         | 
| 16 | 
            +
            library_name: transformers
         | 
| 17 | 
            +
            ---
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # alexgusevski/EXAONE-Deep-2.4B-q8-mlx
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            The Model [alexgusevski/EXAONE-Deep-2.4B-q8-mlx](https://huggingface.co/alexgusevski/EXAONE-Deep-2.4B-q8-mlx) was
         | 
| 22 | 
            +
            converted to MLX format from [LGAI-EXAONE/EXAONE-Deep-2.4B](https://huggingface.co/LGAI-EXAONE/EXAONE-Deep-2.4B)
         | 
| 23 | 
            +
            using mlx-lm version **0.22.0**.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ## Use with mlx
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            ```bash
         | 
| 28 | 
            +
            pip install mlx-lm
         | 
| 29 | 
            +
            ```
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            ```python
         | 
| 32 | 
            +
            from mlx_lm import load, generate
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            model, tokenizer = load("alexgusevski/EXAONE-Deep-2.4B-q8-mlx")
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            prompt = "hello"
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            if tokenizer.chat_template is not None:
         | 
| 39 | 
            +
                messages = [{"role": "user", "content": prompt}]
         | 
| 40 | 
            +
                prompt = tokenizer.apply_chat_template(
         | 
| 41 | 
            +
                    messages, add_generation_prompt=True
         | 
| 42 | 
            +
                )
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            response = generate(model, tokenizer, prompt=prompt, verbose=True)
         | 
| 45 | 
            +
            ```
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,47 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "activation_function": "silu",
         | 
| 3 | 
            +
                "architectures": [
         | 
| 4 | 
            +
                    "ExaoneForCausalLM"
         | 
| 5 | 
            +
                ],
         | 
| 6 | 
            +
                "attention_dropout": 0.0,
         | 
| 7 | 
            +
                "auto_map": {
         | 
| 8 | 
            +
                    "AutoConfig": "configuration_exaone.ExaoneConfig",
         | 
| 9 | 
            +
                    "AutoModelForCausalLM": "modeling_exaone.ExaoneForCausalLM",
         | 
| 10 | 
            +
                    "AutoModelForSequenceClassification": "modeling_exaone.ExaoneForSequenceClassification"
         | 
| 11 | 
            +
                },
         | 
| 12 | 
            +
                "bos_token_id": 1,
         | 
| 13 | 
            +
                "embed_dropout": 0.0,
         | 
| 14 | 
            +
                "eos_token_id": 361,
         | 
| 15 | 
            +
                "head_dim": 80,
         | 
| 16 | 
            +
                "hidden_size": 2560,
         | 
| 17 | 
            +
                "initializer_range": 0.02,
         | 
| 18 | 
            +
                "intermediate_size": 7168,
         | 
| 19 | 
            +
                "layer_norm_epsilon": 1e-05,
         | 
| 20 | 
            +
                "max_position_embeddings": 32768,
         | 
| 21 | 
            +
                "model_type": "exaone",
         | 
| 22 | 
            +
                "num_attention_heads": 32,
         | 
| 23 | 
            +
                "num_key_value_heads": 8,
         | 
| 24 | 
            +
                "num_layers": 30,
         | 
| 25 | 
            +
                "pad_token_id": 0,
         | 
| 26 | 
            +
                "quantization": {
         | 
| 27 | 
            +
                    "group_size": 64,
         | 
| 28 | 
            +
                    "bits": 8
         | 
| 29 | 
            +
                },
         | 
| 30 | 
            +
                "quantization_config": {
         | 
| 31 | 
            +
                    "group_size": 64,
         | 
| 32 | 
            +
                    "bits": 8
         | 
| 33 | 
            +
                },
         | 
| 34 | 
            +
                "rope_scaling": {
         | 
| 35 | 
            +
                    "factor": 8.0,
         | 
| 36 | 
            +
                    "high_freq_factor": 4.0,
         | 
| 37 | 
            +
                    "low_freq_factor": 1.0,
         | 
| 38 | 
            +
                    "original_max_position_embeddings": 8192,
         | 
| 39 | 
            +
                    "rope_type": "llama3"
         | 
| 40 | 
            +
                },
         | 
| 41 | 
            +
                "rope_theta": 1000000,
         | 
| 42 | 
            +
                "tie_word_embeddings": true,
         | 
| 43 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 44 | 
            +
                "transformers_version": "4.43.1",
         | 
| 45 | 
            +
                "use_cache": true,
         | 
| 46 | 
            +
                "vocab_size": 102400
         | 
| 47 | 
            +
            }
         | 
    	
        configuration_exaone.py
    ADDED
    
    | @@ -0,0 +1,183 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
            """EXAONE model configuration"""
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 18 | 
            +
            from transformers.utils import logging
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            class ExaoneConfig(PretrainedConfig):
         | 
| 27 | 
            +
                r"""
         | 
| 28 | 
            +
                This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to
         | 
| 29 | 
            +
                instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
         | 
| 30 | 
            +
                configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
         | 
| 33 | 
            +
                outputs. Read the documentation from [`PretrainedConfig`] for more information.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
                Args:
         | 
| 37 | 
            +
                    vocab_size (`int`, *optional*, defaults to 102400):
         | 
| 38 | 
            +
                        Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
         | 
| 39 | 
            +
                        `inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model.
         | 
| 40 | 
            +
                        Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
         | 
| 41 | 
            +
                        [`ExaoneModel`].
         | 
| 42 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 43 | 
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         | 
| 44 | 
            +
                        just in case (e.g., 512 or 1024 or 2048).
         | 
| 45 | 
            +
                    hidden_size (`int`, *optional*, defaults to 2048):
         | 
| 46 | 
            +
                        Dimensionality of the encoder layers and the pooler layer.
         | 
| 47 | 
            +
                    num_layers (`int`, *optional*, defaults to 32):
         | 
| 48 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 49 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 50 | 
            +
                        Number of attention heads for each attention layer in the Transformer decoder.
         | 
| 51 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 52 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 53 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 54 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 55 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 56 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 57 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 58 | 
            +
                        `num_attention_heads`.
         | 
| 59 | 
            +
                    intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
         | 
| 60 | 
            +
                        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
         | 
| 61 | 
            +
                    activation_function (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 62 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 63 | 
            +
                    rope_theta (`float`, *optional*, defaults to 10000.0):
         | 
| 64 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 65 | 
            +
                    rope_scaling (`Dict`, *optional*):
         | 
| 66 | 
            +
                        Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
         | 
| 67 | 
            +
                        and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
         | 
| 68 | 
            +
                        accordingly.
         | 
| 69 | 
            +
                        Expected contents:
         | 
| 70 | 
            +
                            `rope_type` (`str`):
         | 
| 71 | 
            +
                                The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
         | 
| 72 | 
            +
                                'llama3'], with 'default' being the original RoPE implementation.
         | 
| 73 | 
            +
                            `factor` (`float`, *optional*):
         | 
| 74 | 
            +
                                Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
         | 
| 75 | 
            +
                                most scaling types, a `factor` of x will enable the model to handle sequences of length x *
         | 
| 76 | 
            +
                                original maximum pre-trained length.
         | 
| 77 | 
            +
                            `original_max_position_embeddings` (`int`, *optional*):
         | 
| 78 | 
            +
                                Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
         | 
| 79 | 
            +
                                pretraining.
         | 
| 80 | 
            +
                            `attention_factor` (`float`, *optional*):
         | 
| 81 | 
            +
                                Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
         | 
| 82 | 
            +
                                computation. If unspecified, it defaults to value recommended by the implementation, using the
         | 
| 83 | 
            +
                                `factor` field to infer the suggested value.
         | 
| 84 | 
            +
                            `beta_fast` (`float`, *optional*):
         | 
| 85 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
         | 
| 86 | 
            +
                                ramp function. If unspecified, it defaults to 32.
         | 
| 87 | 
            +
                            `beta_slow` (`float`, *optional*):
         | 
| 88 | 
            +
                                Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
         | 
| 89 | 
            +
                                ramp function. If unspecified, it defaults to 1.
         | 
| 90 | 
            +
                            `short_factor` (`List[float]`, *optional*):
         | 
| 91 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to short contexts (<
         | 
| 92 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 93 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 94 | 
            +
                            `long_factor` (`List[float]`, *optional*):
         | 
| 95 | 
            +
                                Only used with 'longrope'. The scaling factor to be applied to long contexts (<
         | 
| 96 | 
            +
                                `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
         | 
| 97 | 
            +
                                size divided by the number of attention heads divided by 2
         | 
| 98 | 
            +
                            `low_freq_factor` (`float`, *optional*):
         | 
| 99 | 
            +
                                Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
         | 
| 100 | 
            +
                            `high_freq_factor` (`float`, *optional*):
         | 
| 101 | 
            +
                                Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
         | 
| 102 | 
            +
                    embed_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 103 | 
            +
                        The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
         | 
| 104 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 105 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 106 | 
            +
                    layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
         | 
| 107 | 
            +
                        The epsilon used by the layer normalization layers.
         | 
| 108 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 109 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 110 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 111 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 112 | 
            +
                        relevant if ``config.is_decoder=True``.
         | 
| 113 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 0):
         | 
| 114 | 
            +
                        Beginning of stream token id.
         | 
| 115 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 116 | 
            +
                        End of stream token id.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                Example:
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                ```python
         | 
| 121 | 
            +
                >>> from transformers import EXAONEModel, ExaoneConfig
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                >>> # Initializing a EXAONE configuration
         | 
| 124 | 
            +
                >>> configuration = ExaoneConfig()
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                >>> # Initializing a model from configuration
         | 
| 127 | 
            +
                >>> model = EXAONEModel(configuration)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                >>> # Accessing the model configuration
         | 
| 130 | 
            +
                >>> configuration = model.config
         | 
| 131 | 
            +
                ```"""
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                model_type = "exaone"
         | 
| 134 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 135 | 
            +
                attribute_map = {"num_hidden_layers": "num_layers"}
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                def __init__(
         | 
| 138 | 
            +
                    self,
         | 
| 139 | 
            +
                    vocab_size=102400,
         | 
| 140 | 
            +
                    max_position_embeddings=2048,
         | 
| 141 | 
            +
                    hidden_size=2048,
         | 
| 142 | 
            +
                    num_layers=32,
         | 
| 143 | 
            +
                    num_attention_heads=32,
         | 
| 144 | 
            +
                    num_key_value_heads=None,
         | 
| 145 | 
            +
                    intermediate_size=None,
         | 
| 146 | 
            +
                    activation_function="silu",
         | 
| 147 | 
            +
                    rope_theta=10000.0,
         | 
| 148 | 
            +
                    rope_scaling=None,
         | 
| 149 | 
            +
                    embed_dropout=0.0,
         | 
| 150 | 
            +
                    attention_dropout=0.0,
         | 
| 151 | 
            +
                    layer_norm_epsilon=1e-5,
         | 
| 152 | 
            +
                    initializer_range=0.02,
         | 
| 153 | 
            +
                    use_cache=True,
         | 
| 154 | 
            +
                    bos_token_id=0,
         | 
| 155 | 
            +
                    eos_token_id=2,
         | 
| 156 | 
            +
                    **kwargs,
         | 
| 157 | 
            +
                ):
         | 
| 158 | 
            +
                    self.vocab_size = vocab_size
         | 
| 159 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 160 | 
            +
                    self.hidden_size = hidden_size
         | 
| 161 | 
            +
                    self.num_layers = num_layers
         | 
| 162 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 163 | 
            +
                    self.num_layers = num_layers
         | 
| 164 | 
            +
                    if num_key_value_heads is None:
         | 
| 165 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 166 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 167 | 
            +
                    if intermediate_size:
         | 
| 168 | 
            +
                        self.intermediate_size = intermediate_size
         | 
| 169 | 
            +
                    else:
         | 
| 170 | 
            +
                        self.intermediate_size = hidden_size * 4
         | 
| 171 | 
            +
                    self.activation_function = activation_function
         | 
| 172 | 
            +
                    self.embed_dropout = embed_dropout
         | 
| 173 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 174 | 
            +
                    self.layer_norm_epsilon = layer_norm_epsilon
         | 
| 175 | 
            +
                    self.initializer_range = initializer_range
         | 
| 176 | 
            +
                    self.use_cache = use_cache
         | 
| 177 | 
            +
                    self.rope_theta = rope_theta
         | 
| 178 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    self.bos_token_id = bos_token_id
         | 
| 181 | 
            +
                    self.eos_token_id = eos_token_id
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8d3360f20f1c3aa3a58413ecf9da62d43e00d314afcf71387020743316a53b2e
         | 
| 3 | 
            +
            size 2555886414
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,701 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
                "metadata": {
         | 
| 3 | 
            +
                    "total_size": 2555806720
         | 
| 4 | 
            +
                },
         | 
| 5 | 
            +
                "weight_map": {
         | 
| 6 | 
            +
                    "transformer.h.0.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 7 | 
            +
                    "transformer.h.0.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 8 | 
            +
                    "transformer.h.0.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 9 | 
            +
                    "transformer.h.0.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 10 | 
            +
                    "transformer.h.0.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 11 | 
            +
                    "transformer.h.0.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 12 | 
            +
                    "transformer.h.0.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 13 | 
            +
                    "transformer.h.0.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 14 | 
            +
                    "transformer.h.0.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 15 | 
            +
                    "transformer.h.0.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 16 | 
            +
                    "transformer.h.0.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 17 | 
            +
                    "transformer.h.0.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 18 | 
            +
                    "transformer.h.0.ln_1.weight": "model.safetensors",
         | 
| 19 | 
            +
                    "transformer.h.0.ln_2.weight": "model.safetensors",
         | 
| 20 | 
            +
                    "transformer.h.0.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 21 | 
            +
                    "transformer.h.0.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 22 | 
            +
                    "transformer.h.0.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 23 | 
            +
                    "transformer.h.0.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 24 | 
            +
                    "transformer.h.0.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 25 | 
            +
                    "transformer.h.0.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 26 | 
            +
                    "transformer.h.0.mlp.c_proj.biases": "model.safetensors",
         | 
| 27 | 
            +
                    "transformer.h.0.mlp.c_proj.scales": "model.safetensors",
         | 
| 28 | 
            +
                    "transformer.h.0.mlp.c_proj.weight": "model.safetensors",
         | 
| 29 | 
            +
                    "transformer.h.1.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 30 | 
            +
                    "transformer.h.1.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 31 | 
            +
                    "transformer.h.1.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 32 | 
            +
                    "transformer.h.1.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 33 | 
            +
                    "transformer.h.1.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 34 | 
            +
                    "transformer.h.1.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 35 | 
            +
                    "transformer.h.1.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 36 | 
            +
                    "transformer.h.1.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 37 | 
            +
                    "transformer.h.1.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 38 | 
            +
                    "transformer.h.1.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 39 | 
            +
                    "transformer.h.1.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 40 | 
            +
                    "transformer.h.1.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 41 | 
            +
                    "transformer.h.1.ln_1.weight": "model.safetensors",
         | 
| 42 | 
            +
                    "transformer.h.1.ln_2.weight": "model.safetensors",
         | 
| 43 | 
            +
                    "transformer.h.1.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 44 | 
            +
                    "transformer.h.1.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 45 | 
            +
                    "transformer.h.1.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 46 | 
            +
                    "transformer.h.1.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 47 | 
            +
                    "transformer.h.1.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 48 | 
            +
                    "transformer.h.1.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 49 | 
            +
                    "transformer.h.1.mlp.c_proj.biases": "model.safetensors",
         | 
| 50 | 
            +
                    "transformer.h.1.mlp.c_proj.scales": "model.safetensors",
         | 
| 51 | 
            +
                    "transformer.h.1.mlp.c_proj.weight": "model.safetensors",
         | 
| 52 | 
            +
                    "transformer.h.10.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 53 | 
            +
                    "transformer.h.10.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 54 | 
            +
                    "transformer.h.10.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 55 | 
            +
                    "transformer.h.10.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 56 | 
            +
                    "transformer.h.10.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 57 | 
            +
                    "transformer.h.10.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 58 | 
            +
                    "transformer.h.10.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 59 | 
            +
                    "transformer.h.10.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 60 | 
            +
                    "transformer.h.10.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 61 | 
            +
                    "transformer.h.10.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 62 | 
            +
                    "transformer.h.10.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 63 | 
            +
                    "transformer.h.10.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 64 | 
            +
                    "transformer.h.10.ln_1.weight": "model.safetensors",
         | 
| 65 | 
            +
                    "transformer.h.10.ln_2.weight": "model.safetensors",
         | 
| 66 | 
            +
                    "transformer.h.10.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 67 | 
            +
                    "transformer.h.10.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 68 | 
            +
                    "transformer.h.10.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 69 | 
            +
                    "transformer.h.10.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 70 | 
            +
                    "transformer.h.10.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 71 | 
            +
                    "transformer.h.10.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 72 | 
            +
                    "transformer.h.10.mlp.c_proj.biases": "model.safetensors",
         | 
| 73 | 
            +
                    "transformer.h.10.mlp.c_proj.scales": "model.safetensors",
         | 
| 74 | 
            +
                    "transformer.h.10.mlp.c_proj.weight": "model.safetensors",
         | 
| 75 | 
            +
                    "transformer.h.11.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 76 | 
            +
                    "transformer.h.11.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 77 | 
            +
                    "transformer.h.11.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 78 | 
            +
                    "transformer.h.11.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 79 | 
            +
                    "transformer.h.11.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 80 | 
            +
                    "transformer.h.11.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 81 | 
            +
                    "transformer.h.11.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 82 | 
            +
                    "transformer.h.11.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 83 | 
            +
                    "transformer.h.11.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 84 | 
            +
                    "transformer.h.11.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 85 | 
            +
                    "transformer.h.11.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 86 | 
            +
                    "transformer.h.11.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 87 | 
            +
                    "transformer.h.11.ln_1.weight": "model.safetensors",
         | 
| 88 | 
            +
                    "transformer.h.11.ln_2.weight": "model.safetensors",
         | 
| 89 | 
            +
                    "transformer.h.11.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 90 | 
            +
                    "transformer.h.11.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 91 | 
            +
                    "transformer.h.11.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 92 | 
            +
                    "transformer.h.11.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 93 | 
            +
                    "transformer.h.11.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 94 | 
            +
                    "transformer.h.11.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 95 | 
            +
                    "transformer.h.11.mlp.c_proj.biases": "model.safetensors",
         | 
| 96 | 
            +
                    "transformer.h.11.mlp.c_proj.scales": "model.safetensors",
         | 
| 97 | 
            +
                    "transformer.h.11.mlp.c_proj.weight": "model.safetensors",
         | 
| 98 | 
            +
                    "transformer.h.12.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 99 | 
            +
                    "transformer.h.12.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 100 | 
            +
                    "transformer.h.12.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 101 | 
            +
                    "transformer.h.12.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 102 | 
            +
                    "transformer.h.12.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 103 | 
            +
                    "transformer.h.12.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 104 | 
            +
                    "transformer.h.12.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 105 | 
            +
                    "transformer.h.12.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 106 | 
            +
                    "transformer.h.12.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 107 | 
            +
                    "transformer.h.12.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 108 | 
            +
                    "transformer.h.12.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 109 | 
            +
                    "transformer.h.12.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 110 | 
            +
                    "transformer.h.12.ln_1.weight": "model.safetensors",
         | 
| 111 | 
            +
                    "transformer.h.12.ln_2.weight": "model.safetensors",
         | 
| 112 | 
            +
                    "transformer.h.12.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 113 | 
            +
                    "transformer.h.12.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 114 | 
            +
                    "transformer.h.12.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 115 | 
            +
                    "transformer.h.12.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 116 | 
            +
                    "transformer.h.12.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 117 | 
            +
                    "transformer.h.12.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 118 | 
            +
                    "transformer.h.12.mlp.c_proj.biases": "model.safetensors",
         | 
| 119 | 
            +
                    "transformer.h.12.mlp.c_proj.scales": "model.safetensors",
         | 
| 120 | 
            +
                    "transformer.h.12.mlp.c_proj.weight": "model.safetensors",
         | 
| 121 | 
            +
                    "transformer.h.13.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 122 | 
            +
                    "transformer.h.13.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 123 | 
            +
                    "transformer.h.13.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 124 | 
            +
                    "transformer.h.13.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 125 | 
            +
                    "transformer.h.13.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 126 | 
            +
                    "transformer.h.13.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 127 | 
            +
                    "transformer.h.13.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 128 | 
            +
                    "transformer.h.13.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 129 | 
            +
                    "transformer.h.13.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 130 | 
            +
                    "transformer.h.13.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 131 | 
            +
                    "transformer.h.13.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 132 | 
            +
                    "transformer.h.13.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 133 | 
            +
                    "transformer.h.13.ln_1.weight": "model.safetensors",
         | 
| 134 | 
            +
                    "transformer.h.13.ln_2.weight": "model.safetensors",
         | 
| 135 | 
            +
                    "transformer.h.13.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 136 | 
            +
                    "transformer.h.13.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 137 | 
            +
                    "transformer.h.13.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 138 | 
            +
                    "transformer.h.13.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 139 | 
            +
                    "transformer.h.13.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 140 | 
            +
                    "transformer.h.13.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 141 | 
            +
                    "transformer.h.13.mlp.c_proj.biases": "model.safetensors",
         | 
| 142 | 
            +
                    "transformer.h.13.mlp.c_proj.scales": "model.safetensors",
         | 
| 143 | 
            +
                    "transformer.h.13.mlp.c_proj.weight": "model.safetensors",
         | 
| 144 | 
            +
                    "transformer.h.14.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 145 | 
            +
                    "transformer.h.14.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 146 | 
            +
                    "transformer.h.14.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 147 | 
            +
                    "transformer.h.14.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 148 | 
            +
                    "transformer.h.14.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 149 | 
            +
                    "transformer.h.14.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 150 | 
            +
                    "transformer.h.14.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 151 | 
            +
                    "transformer.h.14.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 152 | 
            +
                    "transformer.h.14.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 153 | 
            +
                    "transformer.h.14.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 154 | 
            +
                    "transformer.h.14.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 155 | 
            +
                    "transformer.h.14.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 156 | 
            +
                    "transformer.h.14.ln_1.weight": "model.safetensors",
         | 
| 157 | 
            +
                    "transformer.h.14.ln_2.weight": "model.safetensors",
         | 
| 158 | 
            +
                    "transformer.h.14.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 159 | 
            +
                    "transformer.h.14.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 160 | 
            +
                    "transformer.h.14.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 161 | 
            +
                    "transformer.h.14.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 162 | 
            +
                    "transformer.h.14.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 163 | 
            +
                    "transformer.h.14.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 164 | 
            +
                    "transformer.h.14.mlp.c_proj.biases": "model.safetensors",
         | 
| 165 | 
            +
                    "transformer.h.14.mlp.c_proj.scales": "model.safetensors",
         | 
| 166 | 
            +
                    "transformer.h.14.mlp.c_proj.weight": "model.safetensors",
         | 
| 167 | 
            +
                    "transformer.h.15.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 168 | 
            +
                    "transformer.h.15.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 169 | 
            +
                    "transformer.h.15.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 170 | 
            +
                    "transformer.h.15.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 171 | 
            +
                    "transformer.h.15.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 172 | 
            +
                    "transformer.h.15.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 173 | 
            +
                    "transformer.h.15.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 174 | 
            +
                    "transformer.h.15.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 175 | 
            +
                    "transformer.h.15.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 176 | 
            +
                    "transformer.h.15.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 177 | 
            +
                    "transformer.h.15.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 178 | 
            +
                    "transformer.h.15.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 179 | 
            +
                    "transformer.h.15.ln_1.weight": "model.safetensors",
         | 
| 180 | 
            +
                    "transformer.h.15.ln_2.weight": "model.safetensors",
         | 
| 181 | 
            +
                    "transformer.h.15.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 182 | 
            +
                    "transformer.h.15.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 183 | 
            +
                    "transformer.h.15.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 184 | 
            +
                    "transformer.h.15.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 185 | 
            +
                    "transformer.h.15.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 186 | 
            +
                    "transformer.h.15.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 187 | 
            +
                    "transformer.h.15.mlp.c_proj.biases": "model.safetensors",
         | 
| 188 | 
            +
                    "transformer.h.15.mlp.c_proj.scales": "model.safetensors",
         | 
| 189 | 
            +
                    "transformer.h.15.mlp.c_proj.weight": "model.safetensors",
         | 
| 190 | 
            +
                    "transformer.h.16.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 191 | 
            +
                    "transformer.h.16.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 192 | 
            +
                    "transformer.h.16.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 193 | 
            +
                    "transformer.h.16.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 194 | 
            +
                    "transformer.h.16.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 195 | 
            +
                    "transformer.h.16.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 196 | 
            +
                    "transformer.h.16.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 197 | 
            +
                    "transformer.h.16.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 198 | 
            +
                    "transformer.h.16.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 199 | 
            +
                    "transformer.h.16.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 200 | 
            +
                    "transformer.h.16.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 201 | 
            +
                    "transformer.h.16.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 202 | 
            +
                    "transformer.h.16.ln_1.weight": "model.safetensors",
         | 
| 203 | 
            +
                    "transformer.h.16.ln_2.weight": "model.safetensors",
         | 
| 204 | 
            +
                    "transformer.h.16.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 205 | 
            +
                    "transformer.h.16.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 206 | 
            +
                    "transformer.h.16.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 207 | 
            +
                    "transformer.h.16.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 208 | 
            +
                    "transformer.h.16.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 209 | 
            +
                    "transformer.h.16.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 210 | 
            +
                    "transformer.h.16.mlp.c_proj.biases": "model.safetensors",
         | 
| 211 | 
            +
                    "transformer.h.16.mlp.c_proj.scales": "model.safetensors",
         | 
| 212 | 
            +
                    "transformer.h.16.mlp.c_proj.weight": "model.safetensors",
         | 
| 213 | 
            +
                    "transformer.h.17.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 214 | 
            +
                    "transformer.h.17.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 215 | 
            +
                    "transformer.h.17.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 216 | 
            +
                    "transformer.h.17.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 217 | 
            +
                    "transformer.h.17.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 218 | 
            +
                    "transformer.h.17.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 219 | 
            +
                    "transformer.h.17.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 220 | 
            +
                    "transformer.h.17.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 221 | 
            +
                    "transformer.h.17.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 222 | 
            +
                    "transformer.h.17.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 223 | 
            +
                    "transformer.h.17.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 224 | 
            +
                    "transformer.h.17.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 225 | 
            +
                    "transformer.h.17.ln_1.weight": "model.safetensors",
         | 
| 226 | 
            +
                    "transformer.h.17.ln_2.weight": "model.safetensors",
         | 
| 227 | 
            +
                    "transformer.h.17.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 228 | 
            +
                    "transformer.h.17.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 229 | 
            +
                    "transformer.h.17.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 230 | 
            +
                    "transformer.h.17.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 231 | 
            +
                    "transformer.h.17.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 232 | 
            +
                    "transformer.h.17.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 233 | 
            +
                    "transformer.h.17.mlp.c_proj.biases": "model.safetensors",
         | 
| 234 | 
            +
                    "transformer.h.17.mlp.c_proj.scales": "model.safetensors",
         | 
| 235 | 
            +
                    "transformer.h.17.mlp.c_proj.weight": "model.safetensors",
         | 
| 236 | 
            +
                    "transformer.h.18.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 237 | 
            +
                    "transformer.h.18.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 238 | 
            +
                    "transformer.h.18.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 239 | 
            +
                    "transformer.h.18.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 240 | 
            +
                    "transformer.h.18.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 241 | 
            +
                    "transformer.h.18.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 242 | 
            +
                    "transformer.h.18.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 243 | 
            +
                    "transformer.h.18.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 244 | 
            +
                    "transformer.h.18.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 245 | 
            +
                    "transformer.h.18.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 246 | 
            +
                    "transformer.h.18.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 247 | 
            +
                    "transformer.h.18.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 248 | 
            +
                    "transformer.h.18.ln_1.weight": "model.safetensors",
         | 
| 249 | 
            +
                    "transformer.h.18.ln_2.weight": "model.safetensors",
         | 
| 250 | 
            +
                    "transformer.h.18.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 251 | 
            +
                    "transformer.h.18.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 252 | 
            +
                    "transformer.h.18.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 253 | 
            +
                    "transformer.h.18.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 254 | 
            +
                    "transformer.h.18.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 255 | 
            +
                    "transformer.h.18.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 256 | 
            +
                    "transformer.h.18.mlp.c_proj.biases": "model.safetensors",
         | 
| 257 | 
            +
                    "transformer.h.18.mlp.c_proj.scales": "model.safetensors",
         | 
| 258 | 
            +
                    "transformer.h.18.mlp.c_proj.weight": "model.safetensors",
         | 
| 259 | 
            +
                    "transformer.h.19.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 260 | 
            +
                    "transformer.h.19.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 261 | 
            +
                    "transformer.h.19.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 262 | 
            +
                    "transformer.h.19.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 263 | 
            +
                    "transformer.h.19.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 264 | 
            +
                    "transformer.h.19.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 265 | 
            +
                    "transformer.h.19.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 266 | 
            +
                    "transformer.h.19.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 267 | 
            +
                    "transformer.h.19.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 268 | 
            +
                    "transformer.h.19.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 269 | 
            +
                    "transformer.h.19.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 270 | 
            +
                    "transformer.h.19.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 271 | 
            +
                    "transformer.h.19.ln_1.weight": "model.safetensors",
         | 
| 272 | 
            +
                    "transformer.h.19.ln_2.weight": "model.safetensors",
         | 
| 273 | 
            +
                    "transformer.h.19.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 274 | 
            +
                    "transformer.h.19.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 275 | 
            +
                    "transformer.h.19.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 276 | 
            +
                    "transformer.h.19.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 277 | 
            +
                    "transformer.h.19.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 278 | 
            +
                    "transformer.h.19.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 279 | 
            +
                    "transformer.h.19.mlp.c_proj.biases": "model.safetensors",
         | 
| 280 | 
            +
                    "transformer.h.19.mlp.c_proj.scales": "model.safetensors",
         | 
| 281 | 
            +
                    "transformer.h.19.mlp.c_proj.weight": "model.safetensors",
         | 
| 282 | 
            +
                    "transformer.h.2.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 283 | 
            +
                    "transformer.h.2.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 284 | 
            +
                    "transformer.h.2.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 285 | 
            +
                    "transformer.h.2.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 286 | 
            +
                    "transformer.h.2.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 287 | 
            +
                    "transformer.h.2.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 288 | 
            +
                    "transformer.h.2.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 289 | 
            +
                    "transformer.h.2.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 290 | 
            +
                    "transformer.h.2.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 291 | 
            +
                    "transformer.h.2.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 292 | 
            +
                    "transformer.h.2.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 293 | 
            +
                    "transformer.h.2.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 294 | 
            +
                    "transformer.h.2.ln_1.weight": "model.safetensors",
         | 
| 295 | 
            +
                    "transformer.h.2.ln_2.weight": "model.safetensors",
         | 
| 296 | 
            +
                    "transformer.h.2.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 297 | 
            +
                    "transformer.h.2.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 298 | 
            +
                    "transformer.h.2.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 299 | 
            +
                    "transformer.h.2.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 300 | 
            +
                    "transformer.h.2.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 301 | 
            +
                    "transformer.h.2.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 302 | 
            +
                    "transformer.h.2.mlp.c_proj.biases": "model.safetensors",
         | 
| 303 | 
            +
                    "transformer.h.2.mlp.c_proj.scales": "model.safetensors",
         | 
| 304 | 
            +
                    "transformer.h.2.mlp.c_proj.weight": "model.safetensors",
         | 
| 305 | 
            +
                    "transformer.h.20.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 306 | 
            +
                    "transformer.h.20.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 307 | 
            +
                    "transformer.h.20.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 308 | 
            +
                    "transformer.h.20.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 309 | 
            +
                    "transformer.h.20.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 310 | 
            +
                    "transformer.h.20.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 311 | 
            +
                    "transformer.h.20.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 312 | 
            +
                    "transformer.h.20.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 313 | 
            +
                    "transformer.h.20.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 314 | 
            +
                    "transformer.h.20.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 315 | 
            +
                    "transformer.h.20.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 316 | 
            +
                    "transformer.h.20.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 317 | 
            +
                    "transformer.h.20.ln_1.weight": "model.safetensors",
         | 
| 318 | 
            +
                    "transformer.h.20.ln_2.weight": "model.safetensors",
         | 
| 319 | 
            +
                    "transformer.h.20.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 320 | 
            +
                    "transformer.h.20.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 321 | 
            +
                    "transformer.h.20.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 322 | 
            +
                    "transformer.h.20.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 323 | 
            +
                    "transformer.h.20.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 324 | 
            +
                    "transformer.h.20.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 325 | 
            +
                    "transformer.h.20.mlp.c_proj.biases": "model.safetensors",
         | 
| 326 | 
            +
                    "transformer.h.20.mlp.c_proj.scales": "model.safetensors",
         | 
| 327 | 
            +
                    "transformer.h.20.mlp.c_proj.weight": "model.safetensors",
         | 
| 328 | 
            +
                    "transformer.h.21.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 329 | 
            +
                    "transformer.h.21.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 330 | 
            +
                    "transformer.h.21.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 331 | 
            +
                    "transformer.h.21.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 332 | 
            +
                    "transformer.h.21.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 333 | 
            +
                    "transformer.h.21.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 334 | 
            +
                    "transformer.h.21.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 335 | 
            +
                    "transformer.h.21.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 336 | 
            +
                    "transformer.h.21.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 337 | 
            +
                    "transformer.h.21.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 338 | 
            +
                    "transformer.h.21.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 339 | 
            +
                    "transformer.h.21.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 340 | 
            +
                    "transformer.h.21.ln_1.weight": "model.safetensors",
         | 
| 341 | 
            +
                    "transformer.h.21.ln_2.weight": "model.safetensors",
         | 
| 342 | 
            +
                    "transformer.h.21.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 343 | 
            +
                    "transformer.h.21.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 344 | 
            +
                    "transformer.h.21.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 345 | 
            +
                    "transformer.h.21.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 346 | 
            +
                    "transformer.h.21.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 347 | 
            +
                    "transformer.h.21.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 348 | 
            +
                    "transformer.h.21.mlp.c_proj.biases": "model.safetensors",
         | 
| 349 | 
            +
                    "transformer.h.21.mlp.c_proj.scales": "model.safetensors",
         | 
| 350 | 
            +
                    "transformer.h.21.mlp.c_proj.weight": "model.safetensors",
         | 
| 351 | 
            +
                    "transformer.h.22.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 352 | 
            +
                    "transformer.h.22.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 353 | 
            +
                    "transformer.h.22.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 354 | 
            +
                    "transformer.h.22.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 355 | 
            +
                    "transformer.h.22.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 356 | 
            +
                    "transformer.h.22.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 357 | 
            +
                    "transformer.h.22.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 358 | 
            +
                    "transformer.h.22.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 359 | 
            +
                    "transformer.h.22.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 360 | 
            +
                    "transformer.h.22.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 361 | 
            +
                    "transformer.h.22.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 362 | 
            +
                    "transformer.h.22.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 363 | 
            +
                    "transformer.h.22.ln_1.weight": "model.safetensors",
         | 
| 364 | 
            +
                    "transformer.h.22.ln_2.weight": "model.safetensors",
         | 
| 365 | 
            +
                    "transformer.h.22.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 366 | 
            +
                    "transformer.h.22.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 367 | 
            +
                    "transformer.h.22.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 368 | 
            +
                    "transformer.h.22.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 369 | 
            +
                    "transformer.h.22.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 370 | 
            +
                    "transformer.h.22.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 371 | 
            +
                    "transformer.h.22.mlp.c_proj.biases": "model.safetensors",
         | 
| 372 | 
            +
                    "transformer.h.22.mlp.c_proj.scales": "model.safetensors",
         | 
| 373 | 
            +
                    "transformer.h.22.mlp.c_proj.weight": "model.safetensors",
         | 
| 374 | 
            +
                    "transformer.h.23.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 375 | 
            +
                    "transformer.h.23.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 376 | 
            +
                    "transformer.h.23.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 377 | 
            +
                    "transformer.h.23.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 378 | 
            +
                    "transformer.h.23.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 379 | 
            +
                    "transformer.h.23.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 380 | 
            +
                    "transformer.h.23.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 381 | 
            +
                    "transformer.h.23.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 382 | 
            +
                    "transformer.h.23.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 383 | 
            +
                    "transformer.h.23.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 384 | 
            +
                    "transformer.h.23.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 385 | 
            +
                    "transformer.h.23.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 386 | 
            +
                    "transformer.h.23.ln_1.weight": "model.safetensors",
         | 
| 387 | 
            +
                    "transformer.h.23.ln_2.weight": "model.safetensors",
         | 
| 388 | 
            +
                    "transformer.h.23.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 389 | 
            +
                    "transformer.h.23.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 390 | 
            +
                    "transformer.h.23.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 391 | 
            +
                    "transformer.h.23.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 392 | 
            +
                    "transformer.h.23.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 393 | 
            +
                    "transformer.h.23.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 394 | 
            +
                    "transformer.h.23.mlp.c_proj.biases": "model.safetensors",
         | 
| 395 | 
            +
                    "transformer.h.23.mlp.c_proj.scales": "model.safetensors",
         | 
| 396 | 
            +
                    "transformer.h.23.mlp.c_proj.weight": "model.safetensors",
         | 
| 397 | 
            +
                    "transformer.h.24.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 398 | 
            +
                    "transformer.h.24.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 399 | 
            +
                    "transformer.h.24.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 400 | 
            +
                    "transformer.h.24.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 401 | 
            +
                    "transformer.h.24.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 402 | 
            +
                    "transformer.h.24.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 403 | 
            +
                    "transformer.h.24.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 404 | 
            +
                    "transformer.h.24.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 405 | 
            +
                    "transformer.h.24.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 406 | 
            +
                    "transformer.h.24.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 407 | 
            +
                    "transformer.h.24.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 408 | 
            +
                    "transformer.h.24.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 409 | 
            +
                    "transformer.h.24.ln_1.weight": "model.safetensors",
         | 
| 410 | 
            +
                    "transformer.h.24.ln_2.weight": "model.safetensors",
         | 
| 411 | 
            +
                    "transformer.h.24.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 412 | 
            +
                    "transformer.h.24.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 413 | 
            +
                    "transformer.h.24.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 414 | 
            +
                    "transformer.h.24.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 415 | 
            +
                    "transformer.h.24.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 416 | 
            +
                    "transformer.h.24.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 417 | 
            +
                    "transformer.h.24.mlp.c_proj.biases": "model.safetensors",
         | 
| 418 | 
            +
                    "transformer.h.24.mlp.c_proj.scales": "model.safetensors",
         | 
| 419 | 
            +
                    "transformer.h.24.mlp.c_proj.weight": "model.safetensors",
         | 
| 420 | 
            +
                    "transformer.h.25.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 421 | 
            +
                    "transformer.h.25.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 422 | 
            +
                    "transformer.h.25.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 423 | 
            +
                    "transformer.h.25.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 424 | 
            +
                    "transformer.h.25.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 425 | 
            +
                    "transformer.h.25.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 426 | 
            +
                    "transformer.h.25.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 427 | 
            +
                    "transformer.h.25.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 428 | 
            +
                    "transformer.h.25.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 429 | 
            +
                    "transformer.h.25.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 430 | 
            +
                    "transformer.h.25.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 431 | 
            +
                    "transformer.h.25.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 432 | 
            +
                    "transformer.h.25.ln_1.weight": "model.safetensors",
         | 
| 433 | 
            +
                    "transformer.h.25.ln_2.weight": "model.safetensors",
         | 
| 434 | 
            +
                    "transformer.h.25.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 435 | 
            +
                    "transformer.h.25.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 436 | 
            +
                    "transformer.h.25.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 437 | 
            +
                    "transformer.h.25.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 438 | 
            +
                    "transformer.h.25.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 439 | 
            +
                    "transformer.h.25.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 440 | 
            +
                    "transformer.h.25.mlp.c_proj.biases": "model.safetensors",
         | 
| 441 | 
            +
                    "transformer.h.25.mlp.c_proj.scales": "model.safetensors",
         | 
| 442 | 
            +
                    "transformer.h.25.mlp.c_proj.weight": "model.safetensors",
         | 
| 443 | 
            +
                    "transformer.h.26.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 444 | 
            +
                    "transformer.h.26.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 445 | 
            +
                    "transformer.h.26.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 446 | 
            +
                    "transformer.h.26.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 447 | 
            +
                    "transformer.h.26.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 448 | 
            +
                    "transformer.h.26.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 449 | 
            +
                    "transformer.h.26.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 450 | 
            +
                    "transformer.h.26.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 451 | 
            +
                    "transformer.h.26.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 452 | 
            +
                    "transformer.h.26.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 453 | 
            +
                    "transformer.h.26.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 454 | 
            +
                    "transformer.h.26.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 455 | 
            +
                    "transformer.h.26.ln_1.weight": "model.safetensors",
         | 
| 456 | 
            +
                    "transformer.h.26.ln_2.weight": "model.safetensors",
         | 
| 457 | 
            +
                    "transformer.h.26.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 458 | 
            +
                    "transformer.h.26.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 459 | 
            +
                    "transformer.h.26.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 460 | 
            +
                    "transformer.h.26.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 461 | 
            +
                    "transformer.h.26.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 462 | 
            +
                    "transformer.h.26.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 463 | 
            +
                    "transformer.h.26.mlp.c_proj.biases": "model.safetensors",
         | 
| 464 | 
            +
                    "transformer.h.26.mlp.c_proj.scales": "model.safetensors",
         | 
| 465 | 
            +
                    "transformer.h.26.mlp.c_proj.weight": "model.safetensors",
         | 
| 466 | 
            +
                    "transformer.h.27.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 467 | 
            +
                    "transformer.h.27.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 468 | 
            +
                    "transformer.h.27.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 469 | 
            +
                    "transformer.h.27.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 470 | 
            +
                    "transformer.h.27.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 471 | 
            +
                    "transformer.h.27.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 472 | 
            +
                    "transformer.h.27.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 473 | 
            +
                    "transformer.h.27.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 474 | 
            +
                    "transformer.h.27.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 475 | 
            +
                    "transformer.h.27.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 476 | 
            +
                    "transformer.h.27.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 477 | 
            +
                    "transformer.h.27.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 478 | 
            +
                    "transformer.h.27.ln_1.weight": "model.safetensors",
         | 
| 479 | 
            +
                    "transformer.h.27.ln_2.weight": "model.safetensors",
         | 
| 480 | 
            +
                    "transformer.h.27.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 481 | 
            +
                    "transformer.h.27.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 482 | 
            +
                    "transformer.h.27.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 483 | 
            +
                    "transformer.h.27.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 484 | 
            +
                    "transformer.h.27.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 485 | 
            +
                    "transformer.h.27.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 486 | 
            +
                    "transformer.h.27.mlp.c_proj.biases": "model.safetensors",
         | 
| 487 | 
            +
                    "transformer.h.27.mlp.c_proj.scales": "model.safetensors",
         | 
| 488 | 
            +
                    "transformer.h.27.mlp.c_proj.weight": "model.safetensors",
         | 
| 489 | 
            +
                    "transformer.h.28.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 490 | 
            +
                    "transformer.h.28.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 491 | 
            +
                    "transformer.h.28.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 492 | 
            +
                    "transformer.h.28.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 493 | 
            +
                    "transformer.h.28.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 494 | 
            +
                    "transformer.h.28.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 495 | 
            +
                    "transformer.h.28.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 496 | 
            +
                    "transformer.h.28.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 497 | 
            +
                    "transformer.h.28.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 498 | 
            +
                    "transformer.h.28.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 499 | 
            +
                    "transformer.h.28.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 500 | 
            +
                    "transformer.h.28.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 501 | 
            +
                    "transformer.h.28.ln_1.weight": "model.safetensors",
         | 
| 502 | 
            +
                    "transformer.h.28.ln_2.weight": "model.safetensors",
         | 
| 503 | 
            +
                    "transformer.h.28.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 504 | 
            +
                    "transformer.h.28.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 505 | 
            +
                    "transformer.h.28.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 506 | 
            +
                    "transformer.h.28.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 507 | 
            +
                    "transformer.h.28.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 508 | 
            +
                    "transformer.h.28.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 509 | 
            +
                    "transformer.h.28.mlp.c_proj.biases": "model.safetensors",
         | 
| 510 | 
            +
                    "transformer.h.28.mlp.c_proj.scales": "model.safetensors",
         | 
| 511 | 
            +
                    "transformer.h.28.mlp.c_proj.weight": "model.safetensors",
         | 
| 512 | 
            +
                    "transformer.h.29.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 513 | 
            +
                    "transformer.h.29.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 514 | 
            +
                    "transformer.h.29.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 515 | 
            +
                    "transformer.h.29.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 516 | 
            +
                    "transformer.h.29.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 517 | 
            +
                    "transformer.h.29.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 518 | 
            +
                    "transformer.h.29.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 519 | 
            +
                    "transformer.h.29.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 520 | 
            +
                    "transformer.h.29.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 521 | 
            +
                    "transformer.h.29.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 522 | 
            +
                    "transformer.h.29.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 523 | 
            +
                    "transformer.h.29.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 524 | 
            +
                    "transformer.h.29.ln_1.weight": "model.safetensors",
         | 
| 525 | 
            +
                    "transformer.h.29.ln_2.weight": "model.safetensors",
         | 
| 526 | 
            +
                    "transformer.h.29.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 527 | 
            +
                    "transformer.h.29.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 528 | 
            +
                    "transformer.h.29.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 529 | 
            +
                    "transformer.h.29.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 530 | 
            +
                    "transformer.h.29.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 531 | 
            +
                    "transformer.h.29.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 532 | 
            +
                    "transformer.h.29.mlp.c_proj.biases": "model.safetensors",
         | 
| 533 | 
            +
                    "transformer.h.29.mlp.c_proj.scales": "model.safetensors",
         | 
| 534 | 
            +
                    "transformer.h.29.mlp.c_proj.weight": "model.safetensors",
         | 
| 535 | 
            +
                    "transformer.h.3.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 536 | 
            +
                    "transformer.h.3.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 537 | 
            +
                    "transformer.h.3.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 538 | 
            +
                    "transformer.h.3.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 539 | 
            +
                    "transformer.h.3.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 540 | 
            +
                    "transformer.h.3.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 541 | 
            +
                    "transformer.h.3.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 542 | 
            +
                    "transformer.h.3.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 543 | 
            +
                    "transformer.h.3.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 544 | 
            +
                    "transformer.h.3.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 545 | 
            +
                    "transformer.h.3.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 546 | 
            +
                    "transformer.h.3.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 547 | 
            +
                    "transformer.h.3.ln_1.weight": "model.safetensors",
         | 
| 548 | 
            +
                    "transformer.h.3.ln_2.weight": "model.safetensors",
         | 
| 549 | 
            +
                    "transformer.h.3.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 550 | 
            +
                    "transformer.h.3.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 551 | 
            +
                    "transformer.h.3.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 552 | 
            +
                    "transformer.h.3.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 553 | 
            +
                    "transformer.h.3.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 554 | 
            +
                    "transformer.h.3.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 555 | 
            +
                    "transformer.h.3.mlp.c_proj.biases": "model.safetensors",
         | 
| 556 | 
            +
                    "transformer.h.3.mlp.c_proj.scales": "model.safetensors",
         | 
| 557 | 
            +
                    "transformer.h.3.mlp.c_proj.weight": "model.safetensors",
         | 
| 558 | 
            +
                    "transformer.h.4.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 559 | 
            +
                    "transformer.h.4.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 560 | 
            +
                    "transformer.h.4.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 561 | 
            +
                    "transformer.h.4.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 562 | 
            +
                    "transformer.h.4.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 563 | 
            +
                    "transformer.h.4.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 564 | 
            +
                    "transformer.h.4.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 565 | 
            +
                    "transformer.h.4.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 566 | 
            +
                    "transformer.h.4.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 567 | 
            +
                    "transformer.h.4.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 568 | 
            +
                    "transformer.h.4.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 569 | 
            +
                    "transformer.h.4.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 570 | 
            +
                    "transformer.h.4.ln_1.weight": "model.safetensors",
         | 
| 571 | 
            +
                    "transformer.h.4.ln_2.weight": "model.safetensors",
         | 
| 572 | 
            +
                    "transformer.h.4.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 573 | 
            +
                    "transformer.h.4.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 574 | 
            +
                    "transformer.h.4.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 575 | 
            +
                    "transformer.h.4.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 576 | 
            +
                    "transformer.h.4.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 577 | 
            +
                    "transformer.h.4.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 578 | 
            +
                    "transformer.h.4.mlp.c_proj.biases": "model.safetensors",
         | 
| 579 | 
            +
                    "transformer.h.4.mlp.c_proj.scales": "model.safetensors",
         | 
| 580 | 
            +
                    "transformer.h.4.mlp.c_proj.weight": "model.safetensors",
         | 
| 581 | 
            +
                    "transformer.h.5.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 582 | 
            +
                    "transformer.h.5.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 583 | 
            +
                    "transformer.h.5.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 584 | 
            +
                    "transformer.h.5.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 585 | 
            +
                    "transformer.h.5.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 586 | 
            +
                    "transformer.h.5.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 587 | 
            +
                    "transformer.h.5.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 588 | 
            +
                    "transformer.h.5.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 589 | 
            +
                    "transformer.h.5.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 590 | 
            +
                    "transformer.h.5.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 591 | 
            +
                    "transformer.h.5.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 592 | 
            +
                    "transformer.h.5.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 593 | 
            +
                    "transformer.h.5.ln_1.weight": "model.safetensors",
         | 
| 594 | 
            +
                    "transformer.h.5.ln_2.weight": "model.safetensors",
         | 
| 595 | 
            +
                    "transformer.h.5.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 596 | 
            +
                    "transformer.h.5.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 597 | 
            +
                    "transformer.h.5.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 598 | 
            +
                    "transformer.h.5.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 599 | 
            +
                    "transformer.h.5.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 600 | 
            +
                    "transformer.h.5.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 601 | 
            +
                    "transformer.h.5.mlp.c_proj.biases": "model.safetensors",
         | 
| 602 | 
            +
                    "transformer.h.5.mlp.c_proj.scales": "model.safetensors",
         | 
| 603 | 
            +
                    "transformer.h.5.mlp.c_proj.weight": "model.safetensors",
         | 
| 604 | 
            +
                    "transformer.h.6.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 605 | 
            +
                    "transformer.h.6.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 606 | 
            +
                    "transformer.h.6.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 607 | 
            +
                    "transformer.h.6.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 608 | 
            +
                    "transformer.h.6.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 609 | 
            +
                    "transformer.h.6.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 610 | 
            +
                    "transformer.h.6.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 611 | 
            +
                    "transformer.h.6.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 612 | 
            +
                    "transformer.h.6.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 613 | 
            +
                    "transformer.h.6.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 614 | 
            +
                    "transformer.h.6.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 615 | 
            +
                    "transformer.h.6.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 616 | 
            +
                    "transformer.h.6.ln_1.weight": "model.safetensors",
         | 
| 617 | 
            +
                    "transformer.h.6.ln_2.weight": "model.safetensors",
         | 
| 618 | 
            +
                    "transformer.h.6.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 619 | 
            +
                    "transformer.h.6.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 620 | 
            +
                    "transformer.h.6.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 621 | 
            +
                    "transformer.h.6.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 622 | 
            +
                    "transformer.h.6.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 623 | 
            +
                    "transformer.h.6.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 624 | 
            +
                    "transformer.h.6.mlp.c_proj.biases": "model.safetensors",
         | 
| 625 | 
            +
                    "transformer.h.6.mlp.c_proj.scales": "model.safetensors",
         | 
| 626 | 
            +
                    "transformer.h.6.mlp.c_proj.weight": "model.safetensors",
         | 
| 627 | 
            +
                    "transformer.h.7.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 628 | 
            +
                    "transformer.h.7.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 629 | 
            +
                    "transformer.h.7.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 630 | 
            +
                    "transformer.h.7.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 631 | 
            +
                    "transformer.h.7.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 632 | 
            +
                    "transformer.h.7.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 633 | 
            +
                    "transformer.h.7.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 634 | 
            +
                    "transformer.h.7.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 635 | 
            +
                    "transformer.h.7.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 636 | 
            +
                    "transformer.h.7.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 637 | 
            +
                    "transformer.h.7.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 638 | 
            +
                    "transformer.h.7.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 639 | 
            +
                    "transformer.h.7.ln_1.weight": "model.safetensors",
         | 
| 640 | 
            +
                    "transformer.h.7.ln_2.weight": "model.safetensors",
         | 
| 641 | 
            +
                    "transformer.h.7.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 642 | 
            +
                    "transformer.h.7.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 643 | 
            +
                    "transformer.h.7.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 644 | 
            +
                    "transformer.h.7.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 645 | 
            +
                    "transformer.h.7.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 646 | 
            +
                    "transformer.h.7.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 647 | 
            +
                    "transformer.h.7.mlp.c_proj.biases": "model.safetensors",
         | 
| 648 | 
            +
                    "transformer.h.7.mlp.c_proj.scales": "model.safetensors",
         | 
| 649 | 
            +
                    "transformer.h.7.mlp.c_proj.weight": "model.safetensors",
         | 
| 650 | 
            +
                    "transformer.h.8.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 651 | 
            +
                    "transformer.h.8.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 652 | 
            +
                    "transformer.h.8.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 653 | 
            +
                    "transformer.h.8.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 654 | 
            +
                    "transformer.h.8.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 655 | 
            +
                    "transformer.h.8.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 656 | 
            +
                    "transformer.h.8.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 657 | 
            +
                    "transformer.h.8.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 658 | 
            +
                    "transformer.h.8.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 659 | 
            +
                    "transformer.h.8.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 660 | 
            +
                    "transformer.h.8.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 661 | 
            +
                    "transformer.h.8.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 662 | 
            +
                    "transformer.h.8.ln_1.weight": "model.safetensors",
         | 
| 663 | 
            +
                    "transformer.h.8.ln_2.weight": "model.safetensors",
         | 
| 664 | 
            +
                    "transformer.h.8.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 665 | 
            +
                    "transformer.h.8.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 666 | 
            +
                    "transformer.h.8.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 667 | 
            +
                    "transformer.h.8.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 668 | 
            +
                    "transformer.h.8.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 669 | 
            +
                    "transformer.h.8.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 670 | 
            +
                    "transformer.h.8.mlp.c_proj.biases": "model.safetensors",
         | 
| 671 | 
            +
                    "transformer.h.8.mlp.c_proj.scales": "model.safetensors",
         | 
| 672 | 
            +
                    "transformer.h.8.mlp.c_proj.weight": "model.safetensors",
         | 
| 673 | 
            +
                    "transformer.h.9.attn.attention.k_proj.biases": "model.safetensors",
         | 
| 674 | 
            +
                    "transformer.h.9.attn.attention.k_proj.scales": "model.safetensors",
         | 
| 675 | 
            +
                    "transformer.h.9.attn.attention.k_proj.weight": "model.safetensors",
         | 
| 676 | 
            +
                    "transformer.h.9.attn.attention.out_proj.biases": "model.safetensors",
         | 
| 677 | 
            +
                    "transformer.h.9.attn.attention.out_proj.scales": "model.safetensors",
         | 
| 678 | 
            +
                    "transformer.h.9.attn.attention.out_proj.weight": "model.safetensors",
         | 
| 679 | 
            +
                    "transformer.h.9.attn.attention.q_proj.biases": "model.safetensors",
         | 
| 680 | 
            +
                    "transformer.h.9.attn.attention.q_proj.scales": "model.safetensors",
         | 
| 681 | 
            +
                    "transformer.h.9.attn.attention.q_proj.weight": "model.safetensors",
         | 
| 682 | 
            +
                    "transformer.h.9.attn.attention.v_proj.biases": "model.safetensors",
         | 
| 683 | 
            +
                    "transformer.h.9.attn.attention.v_proj.scales": "model.safetensors",
         | 
| 684 | 
            +
                    "transformer.h.9.attn.attention.v_proj.weight": "model.safetensors",
         | 
| 685 | 
            +
                    "transformer.h.9.ln_1.weight": "model.safetensors",
         | 
| 686 | 
            +
                    "transformer.h.9.ln_2.weight": "model.safetensors",
         | 
| 687 | 
            +
                    "transformer.h.9.mlp.c_fc_0.biases": "model.safetensors",
         | 
| 688 | 
            +
                    "transformer.h.9.mlp.c_fc_0.scales": "model.safetensors",
         | 
| 689 | 
            +
                    "transformer.h.9.mlp.c_fc_0.weight": "model.safetensors",
         | 
| 690 | 
            +
                    "transformer.h.9.mlp.c_fc_1.biases": "model.safetensors",
         | 
| 691 | 
            +
                    "transformer.h.9.mlp.c_fc_1.scales": "model.safetensors",
         | 
| 692 | 
            +
                    "transformer.h.9.mlp.c_fc_1.weight": "model.safetensors",
         | 
| 693 | 
            +
                    "transformer.h.9.mlp.c_proj.biases": "model.safetensors",
         | 
| 694 | 
            +
                    "transformer.h.9.mlp.c_proj.scales": "model.safetensors",
         | 
| 695 | 
            +
                    "transformer.h.9.mlp.c_proj.weight": "model.safetensors",
         | 
| 696 | 
            +
                    "transformer.ln_f.weight": "model.safetensors",
         | 
| 697 | 
            +
                    "transformer.wte.biases": "model.safetensors",
         | 
| 698 | 
            +
                    "transformer.wte.scales": "model.safetensors",
         | 
| 699 | 
            +
                    "transformer.wte.weight": "model.safetensors"
         | 
| 700 | 
            +
                }
         | 
| 701 | 
            +
            }
         | 
    	
        modeling_exaone.py
    ADDED
    
    | @@ -0,0 +1,1394 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2021 The LG AI Research EXAONE Lab.
         | 
| 3 | 
            +
            # Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 6 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 7 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 8 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            # You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            # limitations under the License.
         | 
| 21 | 
            +
            """LG AI Research EXAONE Lab"""
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
            from typing import Optional, Tuple, Union
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import torch
         | 
| 27 | 
            +
            import torch.utils.checkpoint
         | 
| 28 | 
            +
            from packaging import version
         | 
| 29 | 
            +
            from torch import nn
         | 
| 30 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            from transformers.activations import ACT2FN
         | 
| 33 | 
            +
            from transformers.cache_utils import Cache, DynamicCache, StaticCache
         | 
| 34 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 35 | 
            +
            from transformers.modeling_attn_mask_utils import AttentionMaskConverter
         | 
| 36 | 
            +
            from transformers.modeling_flash_attention_utils import _flash_attention_forward
         | 
| 37 | 
            +
            from transformers.modeling_outputs import (
         | 
| 38 | 
            +
                BaseModelOutputWithPast,
         | 
| 39 | 
            +
                BaseModelOutputWithPastAndCrossAttentions,
         | 
| 40 | 
            +
                CausalLMOutputWithPast,
         | 
| 41 | 
            +
                QuestionAnsweringModelOutput,
         | 
| 42 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
         | 
| 45 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 46 | 
            +
            from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
         | 
| 47 | 
            +
            from transformers.utils import (
         | 
| 48 | 
            +
                add_code_sample_docstrings,
         | 
| 49 | 
            +
                add_start_docstrings,
         | 
| 50 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 51 | 
            +
                is_flash_attn_2_available,
         | 
| 52 | 
            +
                logging,
         | 
| 53 | 
            +
            )
         | 
| 54 | 
            +
            from .configuration_exaone import ExaoneConfig
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            if is_flash_attn_2_available():
         | 
| 58 | 
            +
                try:
         | 
| 59 | 
            +
                    import flash_attn
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    if version.parse(flash_attn.__version__) > version.parse("2.4.2"):
         | 
| 62 | 
            +
                        from flash_attn.ops.triton.layer_norm import rms_norm_fn
         | 
| 63 | 
            +
                    else:
         | 
| 64 | 
            +
                        from flash_attn.ops.triton.layernorm import rms_norm_fn
         | 
| 65 | 
            +
                except ImportError:
         | 
| 66 | 
            +
                    pass
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            _CHECKPOINT_FOR_DOC = "exaone"
         | 
| 72 | 
            +
            _CONFIG_FOR_DOC = "ExaoneConfig"
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
         | 
| 75 | 
            +
                "exaone",
         | 
| 76 | 
            +
            ]
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            @torch.jit.script
         | 
| 80 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 81 | 
            +
                """
         | 
| 82 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 83 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 84 | 
            +
                """
         | 
| 85 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 86 | 
            +
                if n_rep == 1:
         | 
| 87 | 
            +
                    return hidden_states
         | 
| 88 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 89 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
         | 
| 93 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                Args:
         | 
| 96 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 97 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 98 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 99 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 100 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 101 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 102 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 103 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 104 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 105 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 106 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 107 | 
            +
                Returns:
         | 
| 108 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 109 | 
            +
                """
         | 
| 110 | 
            +
                cos = cos.unsqueeze(unsqueeze_dim)
         | 
| 111 | 
            +
                sin = sin.unsqueeze(unsqueeze_dim)
         | 
| 112 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 113 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 114 | 
            +
                return q_embed, k_embed
         | 
| 115 | 
            +
             | 
| 116 | 
            +
             | 
| 117 | 
            +
            def rotate_half(x):
         | 
| 118 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 119 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 120 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 121 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
             | 
| 124 | 
            +
            def _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 125 | 
            +
                attention_mask: torch.Tensor,
         | 
| 126 | 
            +
                sequence_length: int,
         | 
| 127 | 
            +
                target_length: int,
         | 
| 128 | 
            +
                dtype: torch.dtype,
         | 
| 129 | 
            +
                device: torch.device,
         | 
| 130 | 
            +
                min_dtype: float,
         | 
| 131 | 
            +
                cache_position: torch.Tensor,
         | 
| 132 | 
            +
                batch_size: int,
         | 
| 133 | 
            +
            ):
         | 
| 134 | 
            +
                """
         | 
| 135 | 
            +
                Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
         | 
| 136 | 
            +
                `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                Args:
         | 
| 139 | 
            +
                    attention_mask (`torch.Tensor`):
         | 
| 140 | 
            +
                        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
         | 
| 141 | 
            +
                    sequence_length (`int`):
         | 
| 142 | 
            +
                        The sequence length being processed.
         | 
| 143 | 
            +
                    target_length (`int`):
         | 
| 144 | 
            +
                        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
         | 
| 145 | 
            +
                    dtype (`torch.dtype`):
         | 
| 146 | 
            +
                        The dtype to use for the 4D attention mask.
         | 
| 147 | 
            +
                    device (`torch.device`):
         | 
| 148 | 
            +
                        The device to plcae the 4D attention mask on.
         | 
| 149 | 
            +
                    min_dtype (`float`):
         | 
| 150 | 
            +
                        The minimum value representable with the dtype `dtype`.
         | 
| 151 | 
            +
                    cache_position (`torch.Tensor`):
         | 
| 152 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence.
         | 
| 153 | 
            +
                    batch_size (`torch.Tensor`):
         | 
| 154 | 
            +
                        Batch size.
         | 
| 155 | 
            +
                """
         | 
| 156 | 
            +
                if attention_mask is not None and attention_mask.dim() == 4:
         | 
| 157 | 
            +
                    # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
         | 
| 158 | 
            +
                    causal_mask = attention_mask
         | 
| 159 | 
            +
                else:
         | 
| 160 | 
            +
                    causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
         | 
| 161 | 
            +
                    if sequence_length != 1:
         | 
| 162 | 
            +
                        causal_mask = torch.triu(causal_mask, diagonal=1)
         | 
| 163 | 
            +
                    causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
         | 
| 164 | 
            +
                    causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
         | 
| 165 | 
            +
                    if attention_mask is not None:
         | 
| 166 | 
            +
                        causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
         | 
| 167 | 
            +
                        mask_length = attention_mask.shape[-1]
         | 
| 168 | 
            +
                        padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
         | 
| 169 | 
            +
                        padding_mask = padding_mask == 0
         | 
| 170 | 
            +
                        causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
         | 
| 171 | 
            +
                            padding_mask, min_dtype
         | 
| 172 | 
            +
                        )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                return causal_mask
         | 
| 175 | 
            +
             | 
| 176 | 
            +
             | 
| 177 | 
            +
            class ExaoneRMSNorm(torch.nn.Module):
         | 
| 178 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 179 | 
            +
                    super().__init__()
         | 
| 180 | 
            +
                    self.eps = eps
         | 
| 181 | 
            +
                    self.weight = torch.nn.Parameter(torch.ones(hidden_size))
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                def forward(self, hidden_states):
         | 
| 184 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 185 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 186 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 187 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
         | 
| 188 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
             | 
| 191 | 
            +
            class ExaoneTritonRMSNorm(torch.nn.Module):
         | 
| 192 | 
            +
                def __init__(
         | 
| 193 | 
            +
                    self,
         | 
| 194 | 
            +
                    hidden_size: int = 0,
         | 
| 195 | 
            +
                    eps: float = 1e-5,
         | 
| 196 | 
            +
                ):
         | 
| 197 | 
            +
                    super().__init__()
         | 
| 198 | 
            +
                    self.eps = eps
         | 
| 199 | 
            +
                    self.drop = None
         | 
| 200 | 
            +
                    self.weight = torch.nn.Parameter(torch.empty(hidden_size))
         | 
| 201 | 
            +
                    self.register_parameter("bias", None)
         | 
| 202 | 
            +
                    self.reset_parameters()
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def reset_parameters(self):
         | 
| 205 | 
            +
                    torch.nn.init.ones_(self.weight)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
         | 
| 208 | 
            +
                    return rms_norm_fn(
         | 
| 209 | 
            +
                        x,
         | 
| 210 | 
            +
                        self.weight,
         | 
| 211 | 
            +
                        self.bias,
         | 
| 212 | 
            +
                        residual=residual,
         | 
| 213 | 
            +
                        eps=self.eps,
         | 
| 214 | 
            +
                        dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
         | 
| 215 | 
            +
                        prenorm=prenorm,
         | 
| 216 | 
            +
                        residual_in_fp32=residual_in_fp32,
         | 
| 217 | 
            +
                    )
         | 
| 218 | 
            +
             | 
| 219 | 
            +
             | 
| 220 | 
            +
            ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
         | 
| 221 | 
            +
            ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
             | 
| 224 | 
            +
            class ExaoneRotaryEmbedding(nn.Module):
         | 
| 225 | 
            +
                def __init__(self, config: ExaoneConfig, device=None):
         | 
| 226 | 
            +
                    super().__init__()
         | 
| 227 | 
            +
                    if config.rope_scaling is not None:
         | 
| 228 | 
            +
                        self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
         | 
| 229 | 
            +
                    else:
         | 
| 230 | 
            +
                        self.rope_type = "default"
         | 
| 231 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 232 | 
            +
                    self.max_seq_len = config.max_position_embeddings
         | 
| 233 | 
            +
                    self.original_max_seq_len = config.max_position_embeddings
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    self.config = config
         | 
| 236 | 
            +
                    if self.rope_type not in ROPE_INIT_FUNCTIONS:
         | 
| 237 | 
            +
                        raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
         | 
| 238 | 
            +
                    self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
         | 
| 241 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 242 | 
            +
                    self.original_inv_freq = self.inv_freq
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                def _update_freq(self, position_ids, device):
         | 
| 245 | 
            +
                    """
         | 
| 246 | 
            +
                    dynamic RoPE layers should recompute `inv_freq` in the following situations:
         | 
| 247 | 
            +
                    1 - growing beyond the cached sequence length (allow scaling)
         | 
| 248 | 
            +
                    2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
         | 
| 249 | 
            +
                    """
         | 
| 250 | 
            +
                    seq_len = torch.max(position_ids) + 1
         | 
| 251 | 
            +
                    if seq_len > self.max_seq_len:  # expand to seq_len
         | 
| 252 | 
            +
                        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
         | 
| 253 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 254 | 
            +
                        self.max_seq_len = seq_len
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len:  # reset to original
         | 
| 257 | 
            +
                        self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
         | 
| 258 | 
            +
                        self.max_seq_len = self.original_max_seq_len
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                @torch.no_grad()
         | 
| 261 | 
            +
                def forward(self, x, position_ids):
         | 
| 262 | 
            +
                    if "dynamic" in self.rope_type:
         | 
| 263 | 
            +
                        self._update_freq(position_ids, device=x.device)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
         | 
| 266 | 
            +
                    position_ids_expanded = position_ids[:, None, :].float()
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    device_type = x.device.type
         | 
| 269 | 
            +
                    device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
         | 
| 270 | 
            +
                    with torch.autocast(device_type=device_type, enabled=False):
         | 
| 271 | 
            +
                        freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
         | 
| 272 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 273 | 
            +
                        cos, sin = emb.cos(), emb.sin()
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
         | 
| 276 | 
            +
                    return cos.to(x.dtype), sin.to(x.dtype)
         | 
| 277 | 
            +
             | 
| 278 | 
            +
             | 
| 279 | 
            +
            class ExaoneSelfAttention(nn.Module):
         | 
| 280 | 
            +
                def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
         | 
| 281 | 
            +
                    super().__init__()
         | 
| 282 | 
            +
                    self.config = config
         | 
| 283 | 
            +
                    self.layer_idx = layer_idx
         | 
| 284 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 285 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 286 | 
            +
                    self.head_dim = self.embed_dim // self.num_heads
         | 
| 287 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 288 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 289 | 
            +
                    self.attention_dropout_rate = config.attention_dropout
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if self.head_dim * self.num_heads != self.embed_dim:
         | 
| 292 | 
            +
                        raise ValueError(
         | 
| 293 | 
            +
                            f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
         | 
| 294 | 
            +
                        )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    self.rotary = ExaoneRotaryEmbedding(config)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
         | 
| 299 | 
            +
                    self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
         | 
| 300 | 
            +
                    self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
         | 
| 301 | 
            +
                    self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                def forward(
         | 
| 304 | 
            +
                    self,
         | 
| 305 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 306 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 307 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 308 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 309 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 310 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 311 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 312 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 313 | 
            +
                    **kwargs,
         | 
| 314 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 315 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 316 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 317 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 318 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 321 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 322 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    if position_embeddings is None:
         | 
| 325 | 
            +
                        cos, sin = self.rotary(value_states, position_ids=position_ids)
         | 
| 326 | 
            +
                    else:
         | 
| 327 | 
            +
                        cos, sin = position_embeddings
         | 
| 328 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    if past_key_value is not None:
         | 
| 331 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 332 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 333 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 336 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                    if attention_mask is not None:
         | 
| 341 | 
            +
                        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
         | 
| 342 | 
            +
                        attn_weights = attn_weights + causal_mask
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 345 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
         | 
| 346 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 349 | 
            +
                        raise ValueError(
         | 
| 350 | 
            +
                            f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 351 | 
            +
                            f" {attn_output.size()}"
         | 
| 352 | 
            +
                        )
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 355 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    attn_output = self.out_proj(attn_output)
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    if not output_attentions:
         | 
| 360 | 
            +
                        attn_weights = None
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 363 | 
            +
             | 
| 364 | 
            +
             | 
| 365 | 
            +
            class ExaoneFlashAttention(ExaoneSelfAttention):
         | 
| 366 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 367 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 370 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                def forward(
         | 
| 373 | 
            +
                    self,
         | 
| 374 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 375 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 376 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 377 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 378 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 379 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 380 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 381 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 382 | 
            +
                    **kwargs,
         | 
| 383 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 384 | 
            +
                    if isinstance(past_key_value, StaticCache):
         | 
| 385 | 
            +
                        raise ValueError(
         | 
| 386 | 
            +
                            "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
         | 
| 387 | 
            +
                            "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
         | 
| 388 | 
            +
                        )
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    output_attentions = False
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    bsz, q_len, h_size = hidden_states.size()
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 395 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 396 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 399 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 400 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    if position_embeddings is None:
         | 
| 403 | 
            +
                        cos, sin = self.rotary(value_states, position_ids=position_ids)
         | 
| 404 | 
            +
                    else:
         | 
| 405 | 
            +
                        cos, sin = position_embeddings
         | 
| 406 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                    if past_key_value is not None:
         | 
| 409 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 410 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 411 | 
            +
                        # Only update cache as shape of [bsz, n_head, q_len, head_dim]
         | 
| 412 | 
            +
                        # TODO: need to be fixed when transformers' KV cache layout is changed
         | 
| 413 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 416 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 417 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 420 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 421 | 
            +
                    # cast them back in the correct dtype just to be sure everything works as expected.
         | 
| 422 | 
            +
                    input_dtype = query_states.dtype
         | 
| 423 | 
            +
                    if input_dtype == torch.float32:
         | 
| 424 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 425 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 426 | 
            +
                        # Handle the case where the model is quantized
         | 
| 427 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 428 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 429 | 
            +
                        else:
         | 
| 430 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                        logger.warning_once(
         | 
| 433 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 434 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 435 | 
            +
                            f" {target_dtype}."
         | 
| 436 | 
            +
                        )
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 439 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 440 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    dropout_rate = self.attention_dropout_rate if self.training else 0.0
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                    attn_output = _flash_attention_forward(
         | 
| 445 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
         | 
| 446 | 
            +
                    )
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
         | 
| 449 | 
            +
                    attn_output = self.out_proj(attn_output)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    if not output_attentions:
         | 
| 452 | 
            +
                        attn_weights = None
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 455 | 
            +
             | 
| 456 | 
            +
             | 
| 457 | 
            +
            class ExaoneSdpaAttention(ExaoneSelfAttention):
         | 
| 458 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 459 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                def forward(
         | 
| 462 | 
            +
                    self,
         | 
| 463 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 464 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 465 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 466 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 467 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 468 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 469 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 470 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 471 | 
            +
                    **kwargs,
         | 
| 472 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 473 | 
            +
                    if output_attentions:
         | 
| 474 | 
            +
                        logger.warning_once(
         | 
| 475 | 
            +
                            "ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 476 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 477 | 
            +
                        )
         | 
| 478 | 
            +
                        return super().forward(
         | 
| 479 | 
            +
                            hidden_states=hidden_states,
         | 
| 480 | 
            +
                            attention_mask=attention_mask,
         | 
| 481 | 
            +
                            position_ids=position_ids,
         | 
| 482 | 
            +
                            past_key_value=past_key_value,
         | 
| 483 | 
            +
                            output_attentions=output_attentions,
         | 
| 484 | 
            +
                            use_cache=use_cache,
         | 
| 485 | 
            +
                            cache_position=cache_position,
         | 
| 486 | 
            +
                            position_embeddings=position_embeddings,
         | 
| 487 | 
            +
                            **kwargs,
         | 
| 488 | 
            +
                        )
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 491 | 
            +
             | 
| 492 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 493 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 494 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 497 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 498 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                    if position_embeddings is None:
         | 
| 501 | 
            +
                        cos, sin = self.rotary(value_states, position_ids=position_ids)
         | 
| 502 | 
            +
                    else:
         | 
| 503 | 
            +
                        cos, sin = position_embeddings
         | 
| 504 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    if past_key_value is not None:
         | 
| 507 | 
            +
                        # sin and cos are specific to RoPE models; cache_position needed for the static cache
         | 
| 508 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
         | 
| 509 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 512 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    causal_mask = attention_mask
         | 
| 515 | 
            +
                    if attention_mask is not None:
         | 
| 516 | 
            +
                        causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 519 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 520 | 
            +
                    if query_states.device.type == "cuda" and causal_mask is not None:
         | 
| 521 | 
            +
                        query_states = query_states.contiguous()
         | 
| 522 | 
            +
                        key_states = key_states.contiguous()
         | 
| 523 | 
            +
                        value_states = value_states.contiguous()
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
         | 
| 526 | 
            +
                    # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
         | 
| 527 | 
            +
                    is_causal = True if causal_mask is None and q_len > 1 else False
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 530 | 
            +
                        query_states,
         | 
| 531 | 
            +
                        key_states,
         | 
| 532 | 
            +
                        value_states,
         | 
| 533 | 
            +
                        attn_mask=causal_mask,
         | 
| 534 | 
            +
                        dropout_p=self.attention_dropout_rate if self.training else 0.0,
         | 
| 535 | 
            +
                        is_causal=is_causal,
         | 
| 536 | 
            +
                    )
         | 
| 537 | 
            +
             | 
| 538 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 539 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    attn_output = self.out_proj(attn_output)
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                    return attn_output, None, past_key_value
         | 
| 544 | 
            +
             | 
| 545 | 
            +
             | 
| 546 | 
            +
            class ExaoneAttention(nn.Module):
         | 
| 547 | 
            +
                def __init__(self, config, layer_id=0):
         | 
| 548 | 
            +
                    super().__init__()
         | 
| 549 | 
            +
                    self.layer_id = layer_id
         | 
| 550 | 
            +
                    if "flash" in config._attn_implementation:
         | 
| 551 | 
            +
                        self.attention = ExaoneFlashAttention(config, self.layer_id)
         | 
| 552 | 
            +
                    elif "sdpa" in config._attn_implementation:
         | 
| 553 | 
            +
                        self.attention = ExaoneSdpaAttention(config, self.layer_id)
         | 
| 554 | 
            +
                    else:
         | 
| 555 | 
            +
                        self.attention = ExaoneSelfAttention(config, self.layer_id)
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                def forward(
         | 
| 558 | 
            +
                    self,
         | 
| 559 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 560 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 561 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 562 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 563 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 564 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 565 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 566 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 567 | 
            +
                    **kwargs,
         | 
| 568 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 569 | 
            +
                    return self.attention(
         | 
| 570 | 
            +
                        hidden_states=hidden_states,
         | 
| 571 | 
            +
                        attention_mask=attention_mask,
         | 
| 572 | 
            +
                        position_ids=position_ids,
         | 
| 573 | 
            +
                        past_key_value=past_key_value,
         | 
| 574 | 
            +
                        output_attentions=output_attentions,
         | 
| 575 | 
            +
                        use_cache=use_cache,
         | 
| 576 | 
            +
                        cache_position=cache_position,
         | 
| 577 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 578 | 
            +
                        **kwargs,
         | 
| 579 | 
            +
                    )
         | 
| 580 | 
            +
             | 
| 581 | 
            +
             | 
| 582 | 
            +
            class ExaoneGatedMLP(nn.Module):
         | 
| 583 | 
            +
                def __init__(self, intermediate_size, config):
         | 
| 584 | 
            +
                    super().__init__()
         | 
| 585 | 
            +
                    self.config = config
         | 
| 586 | 
            +
                    embed_dim = config.hidden_size
         | 
| 587 | 
            +
                    self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
         | 
| 588 | 
            +
                    self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
         | 
| 589 | 
            +
                    self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
         | 
| 590 | 
            +
                    self.act = ACT2FN[config.activation_function]
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                def forward(self, hidden_states):
         | 
| 593 | 
            +
                    output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
         | 
| 594 | 
            +
                    return output_proj
         | 
| 595 | 
            +
             | 
| 596 | 
            +
             | 
| 597 | 
            +
            class ExaoneBlock(nn.Module):
         | 
| 598 | 
            +
                def __init__(self, config, layer_id):
         | 
| 599 | 
            +
                    super().__init__()
         | 
| 600 | 
            +
                    self.config = config
         | 
| 601 | 
            +
                    hidden_size = config.hidden_size
         | 
| 602 | 
            +
                    inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
         | 
| 603 | 
            +
                    self.ln_1 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
         | 
| 604 | 
            +
                    self.attn = ExaoneAttention(config, layer_id)
         | 
| 605 | 
            +
                    self.ln_2 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
         | 
| 606 | 
            +
                    self.mlp = ExaoneGatedMLP(inner_dim, config)
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                def forward(
         | 
| 609 | 
            +
                    self,
         | 
| 610 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 611 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 612 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 613 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 614 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 615 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 616 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 617 | 
            +
                    position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
         | 
| 618 | 
            +
                    **kwargs,
         | 
| 619 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 620 | 
            +
                    residual = hidden_states
         | 
| 621 | 
            +
                    hidden_states = self.ln_1(hidden_states)
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attn(
         | 
| 624 | 
            +
                        hidden_states=hidden_states,
         | 
| 625 | 
            +
                        attention_mask=attention_mask,
         | 
| 626 | 
            +
                        position_ids=position_ids,
         | 
| 627 | 
            +
                        past_key_value=past_key_value,
         | 
| 628 | 
            +
                        output_attentions=output_attentions,
         | 
| 629 | 
            +
                        use_cache=use_cache,
         | 
| 630 | 
            +
                        cache_position=cache_position,
         | 
| 631 | 
            +
                        position_embeddings=position_embeddings,
         | 
| 632 | 
            +
                        **kwargs,
         | 
| 633 | 
            +
                    )
         | 
| 634 | 
            +
                    # residual connection
         | 
| 635 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    residual = hidden_states
         | 
| 638 | 
            +
                    hidden_states = self.ln_2(hidden_states)
         | 
| 639 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 640 | 
            +
             | 
| 641 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 642 | 
            +
             | 
| 643 | 
            +
                    outputs = (hidden_states,)
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    if output_attentions:
         | 
| 646 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                    if use_cache:
         | 
| 649 | 
            +
                        outputs += (present_key_value,)
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                    return outputs
         | 
| 652 | 
            +
             | 
| 653 | 
            +
             | 
| 654 | 
            +
            class ExaonePreTrainedModel(PreTrainedModel):
         | 
| 655 | 
            +
                """
         | 
| 656 | 
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         | 
| 657 | 
            +
                models.
         | 
| 658 | 
            +
                """
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                config_class = ExaoneConfig
         | 
| 661 | 
            +
                base_model_prefix = "transformer"
         | 
| 662 | 
            +
                supports_gradient_checkpointing = True
         | 
| 663 | 
            +
                _no_split_modules = ["ExaoneBlock"]
         | 
| 664 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 665 | 
            +
                _supports_flash_attn_2 = True
         | 
| 666 | 
            +
                _supports_sdpa = True
         | 
| 667 | 
            +
                _supports_cache_class = True
         | 
| 668 | 
            +
             | 
| 669 | 
            +
                def __init__(self, *inputs, **kwargs):
         | 
| 670 | 
            +
                    super().__init__(*inputs, **kwargs)
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                def _init_weights(self, module):
         | 
| 673 | 
            +
                    """Initialize the weights."""
         | 
| 674 | 
            +
                    if isinstance(module, (nn.Linear,)):
         | 
| 675 | 
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         | 
| 676 | 
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         | 
| 677 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 678 | 
            +
                        if module.bias is not None:
         | 
| 679 | 
            +
                            module.bias.data.zero_()
         | 
| 680 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 681 | 
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         | 
| 682 | 
            +
                        if module.padding_idx is not None:
         | 
| 683 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 684 | 
            +
                    elif isinstance(module, ExaoneRMSNorm):
         | 
| 685 | 
            +
                        module.weight.data.fill_(1.0)
         | 
| 686 | 
            +
             | 
| 687 | 
            +
             | 
| 688 | 
            +
            EXAONE_START_DOCSTRING = r"""
         | 
| 689 | 
            +
             | 
| 690 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 691 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 692 | 
            +
                etc.)
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 695 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 696 | 
            +
                and behavior.
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                Parameters:
         | 
| 699 | 
            +
                    config ([`ExaoneConfig`]): Model configuration class with all the parameters of the model.
         | 
| 700 | 
            +
                        Initializing with a config file does not load the weights associated with the model, only the
         | 
| 701 | 
            +
                        configuration. Check out the `PreTrainedModel.from_pretrained` method to load the model weights.
         | 
| 702 | 
            +
            """
         | 
| 703 | 
            +
             | 
| 704 | 
            +
            EXAONE_INPUTS_DOCSTRING = r"""
         | 
| 705 | 
            +
                Args:
         | 
| 706 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
         | 
| 707 | 
            +
                        `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
         | 
| 708 | 
            +
                        `past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input
         | 
| 709 | 
            +
                        sequence tokens in the vocabulary.
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                        If `past_key_values` is used, only `input_ids` that do not have their past calculated should be
         | 
| 712 | 
            +
                        passed as `input_ids`.
         | 
| 713 | 
            +
             | 
| 714 | 
            +
                        `What are input IDs? <../glossary.html#input-ids>`__
         | 
| 715 | 
            +
                    attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 716 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 719 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                        `What are attention masks? <../glossary.html#attention-mask>`__
         | 
| 722 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 723 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 724 | 
            +
                        config.max_position_embeddings - 1]`.
         | 
| 725 | 
            +
             | 
| 726 | 
            +
                        `What are position IDs? <../glossary.html#position-ids>`_
         | 
| 727 | 
            +
                    past_key_values (`Cache`, *optional*):
         | 
| 728 | 
            +
                        Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
         | 
| 729 | 
            +
                        `past_key_values` output below). Can be used to speed up sequential decoding. This typically consists
         | 
| 730 | 
            +
                        in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or
         | 
| 731 | 
            +
                        `config.use_cache=True`.
         | 
| 732 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 733 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
         | 
| 734 | 
            +
                        This is useful if you want more control over how to convert `input_ids` indices into associated
         | 
| 735 | 
            +
                        vectors than the model's internal embedding lookup matrix.
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                        If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
         | 
| 738 | 
            +
                        `past_key_values`).
         | 
| 739 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 740 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up
         | 
| 741 | 
            +
                        decoding (see `past_key_values`).
         | 
| 742 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 743 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
         | 
| 744 | 
            +
                        tensors for more detail.
         | 
| 745 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 746 | 
            +
                        Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
         | 
| 747 | 
            +
                        more detail.
         | 
| 748 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 749 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 750 | 
            +
                    cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
         | 
| 751 | 
            +
                        Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
         | 
| 752 | 
            +
                        this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
         | 
| 753 | 
            +
                        the complete sequence length.
         | 
| 754 | 
            +
            """
         | 
| 755 | 
            +
             | 
| 756 | 
            +
             | 
| 757 | 
            +
            @add_start_docstrings(
         | 
| 758 | 
            +
                "The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",
         | 
| 759 | 
            +
                EXAONE_START_DOCSTRING,
         | 
| 760 | 
            +
            )
         | 
| 761 | 
            +
            class ExaoneModel(ExaonePreTrainedModel):
         | 
| 762 | 
            +
                def __init__(self, config):
         | 
| 763 | 
            +
                    super().__init__(config)
         | 
| 764 | 
            +
                    self.config = config
         | 
| 765 | 
            +
                    self.embed_dim = config.hidden_size
         | 
| 766 | 
            +
                    self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
         | 
| 767 | 
            +
                    self.drop = nn.Dropout(float(config.embed_dropout))
         | 
| 768 | 
            +
                    self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
         | 
| 769 | 
            +
                    self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
         | 
| 770 | 
            +
                    self.rotary = ExaoneRotaryEmbedding(config)
         | 
| 771 | 
            +
                    self.gradient_checkpointing = False
         | 
| 772 | 
            +
                    # Initialize weights and apply final processing
         | 
| 773 | 
            +
                    self.post_init()
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                def get_input_embeddings(self):
         | 
| 776 | 
            +
                    return self.wte
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                def set_input_embeddings(self, new_embeddings):
         | 
| 779 | 
            +
                    self.wte = new_embeddings
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
         | 
| 782 | 
            +
                @add_code_sample_docstrings(
         | 
| 783 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 784 | 
            +
                    output_type=BaseModelOutputWithPastAndCrossAttentions,
         | 
| 785 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 786 | 
            +
                )
         | 
| 787 | 
            +
                def forward(
         | 
| 788 | 
            +
                    self,
         | 
| 789 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 790 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 791 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 792 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 793 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 794 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 795 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 796 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 797 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 798 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 799 | 
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
         | 
| 800 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 801 | 
            +
                    output_hidden_states = (
         | 
| 802 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 803 | 
            +
                    )
         | 
| 804 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 805 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 808 | 
            +
                        if use_cache:
         | 
| 809 | 
            +
                            logger.warning_once(
         | 
| 810 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 811 | 
            +
                            )
         | 
| 812 | 
            +
                            use_cache = False
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 815 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 816 | 
            +
                    elif input_ids is not None:
         | 
| 817 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 818 | 
            +
                    elif inputs_embeds is not None:
         | 
| 819 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 820 | 
            +
                    else:
         | 
| 821 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                    return_legacy_cache = False
         | 
| 824 | 
            +
                    if (
         | 
| 825 | 
            +
                        use_cache and not isinstance(past_key_values, Cache) and not self.training
         | 
| 826 | 
            +
                    ):  # kept for BC (non `Cache` `past_key_values` inputs)
         | 
| 827 | 
            +
                        return_legacy_cache = True
         | 
| 828 | 
            +
                        past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 829 | 
            +
                        logger.warning_once(
         | 
| 830 | 
            +
                            "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
         | 
| 831 | 
            +
                            "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
         | 
| 832 | 
            +
                        )
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                    if inputs_embeds is None:
         | 
| 835 | 
            +
                        inputs_embeds = self.wte(input_ids)
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    if cache_position is None:
         | 
| 838 | 
            +
                        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 839 | 
            +
                        cache_position = torch.arange(
         | 
| 840 | 
            +
                            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
         | 
| 841 | 
            +
                        )
         | 
| 842 | 
            +
                    if position_ids is None:
         | 
| 843 | 
            +
                        position_ids = cache_position.unsqueeze(0)
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                    causal_mask = self._update_causal_mask(
         | 
| 846 | 
            +
                        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
         | 
| 847 | 
            +
                    )
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                    hidden_states = inputs_embeds
         | 
| 850 | 
            +
                    hidden_states = self.drop(hidden_states)
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                    position_embeddings = self.rotary(hidden_states, position_ids)
         | 
| 853 | 
            +
             | 
| 854 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 855 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 856 | 
            +
                    next_decoder_cache = None
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    for block in self.h:
         | 
| 859 | 
            +
                        if output_hidden_states:
         | 
| 860 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 861 | 
            +
             | 
| 862 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 863 | 
            +
                            outputs = self._gradient_checkpointing_func(
         | 
| 864 | 
            +
                                block.__call__,
         | 
| 865 | 
            +
                                hidden_states,
         | 
| 866 | 
            +
                                causal_mask,
         | 
| 867 | 
            +
                                position_ids,
         | 
| 868 | 
            +
                                past_key_values,
         | 
| 869 | 
            +
                                output_attentions,
         | 
| 870 | 
            +
                                use_cache,
         | 
| 871 | 
            +
                                cache_position,
         | 
| 872 | 
            +
                                position_embeddings,
         | 
| 873 | 
            +
                            )
         | 
| 874 | 
            +
                        else:
         | 
| 875 | 
            +
                            outputs = block(
         | 
| 876 | 
            +
                                hidden_states,
         | 
| 877 | 
            +
                                attention_mask=causal_mask,
         | 
| 878 | 
            +
                                position_ids=position_ids,
         | 
| 879 | 
            +
                                past_key_value=past_key_values,
         | 
| 880 | 
            +
                                output_attentions=output_attentions,
         | 
| 881 | 
            +
                                use_cache=use_cache,
         | 
| 882 | 
            +
                                cache_position=cache_position,
         | 
| 883 | 
            +
                                position_embeddings=position_embeddings,
         | 
| 884 | 
            +
                            )
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                        hidden_states = outputs[0]
         | 
| 887 | 
            +
                        if use_cache:
         | 
| 888 | 
            +
                            next_decoder_cache = outputs[2 if output_attentions else 1]
         | 
| 889 | 
            +
             | 
| 890 | 
            +
                        if output_attentions:
         | 
| 891 | 
            +
                            all_self_attns += (outputs[1],)
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                    hidden_states = self.ln_f(hidden_states)
         | 
| 894 | 
            +
                    # Add last hidden state
         | 
| 895 | 
            +
                    if output_hidden_states:
         | 
| 896 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    next_cache = None
         | 
| 899 | 
            +
                    if use_cache:
         | 
| 900 | 
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
         | 
| 901 | 
            +
                    if not return_dict:
         | 
| 902 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 905 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 906 | 
            +
                        past_key_values=next_cache,
         | 
| 907 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 908 | 
            +
                        attentions=all_self_attns,
         | 
| 909 | 
            +
                    )
         | 
| 910 | 
            +
             | 
| 911 | 
            +
                def _update_causal_mask(
         | 
| 912 | 
            +
                    self,
         | 
| 913 | 
            +
                    attention_mask: torch.Tensor,
         | 
| 914 | 
            +
                    input_tensor: torch.Tensor,
         | 
| 915 | 
            +
                    cache_position: torch.Tensor,
         | 
| 916 | 
            +
                    past_key_values: Cache,
         | 
| 917 | 
            +
                    output_attentions: bool,
         | 
| 918 | 
            +
                ):
         | 
| 919 | 
            +
                    # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
         | 
| 920 | 
            +
                    # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
         | 
| 921 | 
            +
                    # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
         | 
| 922 | 
            +
                    # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 925 | 
            +
                        if attention_mask is not None and 0.0 in attention_mask:
         | 
| 926 | 
            +
                            return attention_mask
         | 
| 927 | 
            +
                        return None
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
         | 
| 930 | 
            +
                    # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
         | 
| 931 | 
            +
                    # to infer the attention mask.
         | 
| 932 | 
            +
                    past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
         | 
| 933 | 
            +
                    using_static_cache = isinstance(past_key_values, StaticCache)
         | 
| 934 | 
            +
             | 
| 935 | 
            +
                    # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
         | 
| 936 | 
            +
                    if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
         | 
| 937 | 
            +
                        if AttentionMaskConverter._ignore_causal_mask_sdpa(
         | 
| 938 | 
            +
                            attention_mask,
         | 
| 939 | 
            +
                            inputs_embeds=input_tensor,
         | 
| 940 | 
            +
                            past_key_values_length=past_seen_tokens,
         | 
| 941 | 
            +
                            is_training=self.training,
         | 
| 942 | 
            +
                        ):
         | 
| 943 | 
            +
                            return None
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                    dtype, device = input_tensor.dtype, input_tensor.device
         | 
| 946 | 
            +
                    min_dtype = torch.finfo(dtype).min
         | 
| 947 | 
            +
                    sequence_length = input_tensor.shape[1]
         | 
| 948 | 
            +
                    if using_static_cache:
         | 
| 949 | 
            +
                        target_length = past_key_values.get_max_length()
         | 
| 950 | 
            +
                    else:
         | 
| 951 | 
            +
                        target_length = (
         | 
| 952 | 
            +
                            attention_mask.shape[-1]
         | 
| 953 | 
            +
                            if isinstance(attention_mask, torch.Tensor)
         | 
| 954 | 
            +
                            else past_seen_tokens + sequence_length + 1
         | 
| 955 | 
            +
                        )
         | 
| 956 | 
            +
             | 
| 957 | 
            +
                    # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
         | 
| 958 | 
            +
                    causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 959 | 
            +
                        attention_mask,
         | 
| 960 | 
            +
                        sequence_length=sequence_length,
         | 
| 961 | 
            +
                        target_length=target_length,
         | 
| 962 | 
            +
                        dtype=dtype,
         | 
| 963 | 
            +
                        device=device,
         | 
| 964 | 
            +
                        min_dtype=min_dtype,
         | 
| 965 | 
            +
                        cache_position=cache_position,
         | 
| 966 | 
            +
                        batch_size=input_tensor.shape[0],
         | 
| 967 | 
            +
                    )
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                    if (
         | 
| 970 | 
            +
                        self.config._attn_implementation == "sdpa"
         | 
| 971 | 
            +
                        and attention_mask is not None
         | 
| 972 | 
            +
                        and attention_mask.device.type == "cuda"
         | 
| 973 | 
            +
                        and not output_attentions
         | 
| 974 | 
            +
                    ):
         | 
| 975 | 
            +
                        # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
         | 
| 976 | 
            +
                        # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
         | 
| 977 | 
            +
                        # Details: https://github.com/pytorch/pytorch/issues/110213
         | 
| 978 | 
            +
                        causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
         | 
| 979 | 
            +
             | 
| 980 | 
            +
                    return causal_mask
         | 
| 981 | 
            +
             | 
| 982 | 
            +
             | 
| 983 | 
            +
            @add_start_docstrings(
         | 
| 984 | 
            +
                """
         | 
| 985 | 
            +
                The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input
         | 
| 986 | 
            +
                embeddings).
         | 
| 987 | 
            +
                """,
         | 
| 988 | 
            +
                EXAONE_START_DOCSTRING,
         | 
| 989 | 
            +
            )
         | 
| 990 | 
            +
            class ExaoneForCausalLM(ExaonePreTrainedModel, GenerationMixin):
         | 
| 991 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 992 | 
            +
             | 
| 993 | 
            +
                def __init__(self, config):
         | 
| 994 | 
            +
                    super().__init__(config)
         | 
| 995 | 
            +
                    self.transformer = ExaoneModel(config)
         | 
| 996 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 997 | 
            +
                    self.config = config
         | 
| 998 | 
            +
                    # Initialize weights and apply final processing
         | 
| 999 | 
            +
                    self.post_init()
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
                def get_output_embeddings(self):
         | 
| 1002 | 
            +
                    return self.lm_head
         | 
| 1003 | 
            +
             | 
| 1004 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1005 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
         | 
| 1008 | 
            +
                @add_code_sample_docstrings(
         | 
| 1009 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1010 | 
            +
                    output_type=BaseModelOutputWithPast,
         | 
| 1011 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1012 | 
            +
                )
         | 
| 1013 | 
            +
                def forward(
         | 
| 1014 | 
            +
                    self,
         | 
| 1015 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 1016 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1017 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 1018 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 1019 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1020 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 1021 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1022 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1023 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1024 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1025 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 1026 | 
            +
                ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
         | 
| 1027 | 
            +
                    r"""
         | 
| 1028 | 
            +
                    Args:
         | 
| 1029 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1030 | 
            +
                            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
         | 
| 1031 | 
            +
                            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
         | 
| 1032 | 
            +
                            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
         | 
| 1033 | 
            +
             | 
| 1034 | 
            +
                    Example:
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                    ```python
         | 
| 1037 | 
            +
                    >>> from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 1038 | 
            +
             | 
| 1039 | 
            +
                    >>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
         | 
| 1040 | 
            +
                                                                     trust_remote_code=True)
         | 
| 1041 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
                    >>> prompt = "Explain how wonderful you are"
         | 
| 1044 | 
            +
                    >>> messages = [
         | 
| 1045 | 
            +
                        {"role": "system", "content": "You are a helpful assistant."},
         | 
| 1046 | 
            +
                        {"role": "user", "content": prompt}
         | 
| 1047 | 
            +
                    ]
         | 
| 1048 | 
            +
                    >>> input_ids = tokenizer.apply_chat_template(
         | 
| 1049 | 
            +
                        messages,
         | 
| 1050 | 
            +
                        tokenize=True,
         | 
| 1051 | 
            +
                        add_generation_prompt=True,
         | 
| 1052 | 
            +
                        return_tensors="pt"
         | 
| 1053 | 
            +
                    )
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
                    >>> output = model.generate(input_ids, max_new_tokens=128)
         | 
| 1056 | 
            +
                    >>> tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 1057 | 
            +
                    "[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"
         | 
| 1058 | 
            +
                    ```
         | 
| 1059 | 
            +
                    """
         | 
| 1060 | 
            +
             | 
| 1061 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1062 | 
            +
                    output_hidden_states = (
         | 
| 1063 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1064 | 
            +
                    )
         | 
| 1065 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1066 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 1067 | 
            +
                        input_ids,
         | 
| 1068 | 
            +
                        attention_mask=attention_mask,
         | 
| 1069 | 
            +
                        past_key_values=past_key_values,
         | 
| 1070 | 
            +
                        position_ids=position_ids,
         | 
| 1071 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1072 | 
            +
                        use_cache=use_cache,
         | 
| 1073 | 
            +
                        output_attentions=output_attentions,
         | 
| 1074 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1075 | 
            +
                        return_dict=return_dict,
         | 
| 1076 | 
            +
                        cache_position=cache_position,
         | 
| 1077 | 
            +
                    )
         | 
| 1078 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1079 | 
            +
                    lm_logits = self.lm_head(hidden_states)
         | 
| 1080 | 
            +
                    lm_logits = lm_logits.float()
         | 
| 1081 | 
            +
                    loss = None
         | 
| 1082 | 
            +
                    if labels is not None:
         | 
| 1083 | 
            +
                        lm_logits = lm_logits.to(torch.float32)
         | 
| 1084 | 
            +
             | 
| 1085 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1086 | 
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         | 
| 1087 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1088 | 
            +
                        # Flatten the tokens
         | 
| 1089 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1090 | 
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         | 
| 1091 | 
            +
             | 
| 1092 | 
            +
                        lm_logits = lm_logits.to(hidden_states.dtype)
         | 
| 1093 | 
            +
                        loss = loss.to(hidden_states.dtype)
         | 
| 1094 | 
            +
             | 
| 1095 | 
            +
                    if not return_dict:
         | 
| 1096 | 
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         | 
| 1097 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1100 | 
            +
                        loss=loss,
         | 
| 1101 | 
            +
                        logits=lm_logits,
         | 
| 1102 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1103 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1104 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1105 | 
            +
                    )
         | 
| 1106 | 
            +
             | 
| 1107 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1108 | 
            +
                    self,
         | 
| 1109 | 
            +
                    input_ids,
         | 
| 1110 | 
            +
                    past_key_values=None,
         | 
| 1111 | 
            +
                    attention_mask=None,
         | 
| 1112 | 
            +
                    inputs_embeds=None,
         | 
| 1113 | 
            +
                    cache_position=None,
         | 
| 1114 | 
            +
                    position_ids=None,
         | 
| 1115 | 
            +
                    use_cache=True,
         | 
| 1116 | 
            +
                    **kwargs,
         | 
| 1117 | 
            +
                ):
         | 
| 1118 | 
            +
                    # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
         | 
| 1119 | 
            +
                    # Exception 1: when passing input_embeds, input_ids may be missing entries
         | 
| 1120 | 
            +
                    # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
         | 
| 1121 | 
            +
                    if past_key_values is not None:
         | 
| 1122 | 
            +
                        if inputs_embeds is not None:  # Exception 1
         | 
| 1123 | 
            +
                            input_ids = input_ids[:, -cache_position.shape[0] :]
         | 
| 1124 | 
            +
                        elif input_ids.shape[1] != cache_position.shape[0]:  # Default case (the "else", a no op, is Exception 2)
         | 
| 1125 | 
            +
                            input_ids = input_ids[:, cache_position]
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1128 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1129 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1130 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1131 | 
            +
                        if past_key_values:
         | 
| 1132 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1133 | 
            +
             | 
| 1134 | 
            +
                            # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s  `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
         | 
| 1135 | 
            +
                            position_ids = position_ids.clone(memory_format=torch.contiguous_format)
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1138 | 
            +
                    if inputs_embeds is not None and cache_position[0] == 0:
         | 
| 1139 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
         | 
| 1140 | 
            +
                    else:
         | 
| 1141 | 
            +
                        model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
         | 
| 1142 | 
            +
             | 
| 1143 | 
            +
                    if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
         | 
| 1144 | 
            +
                        if inputs_embeds is not None:
         | 
| 1145 | 
            +
                            batch_size, sequence_length, _ = inputs_embeds.shape
         | 
| 1146 | 
            +
                            device = inputs_embeds.device
         | 
| 1147 | 
            +
                        else:
         | 
| 1148 | 
            +
                            batch_size, sequence_length = input_ids.shape
         | 
| 1149 | 
            +
                            device = input_ids.device
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                        dtype = self.lm_head.weight.dtype
         | 
| 1152 | 
            +
                        min_dtype = torch.finfo(dtype).min
         | 
| 1153 | 
            +
             | 
| 1154 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
         | 
| 1155 | 
            +
                            attention_mask,
         | 
| 1156 | 
            +
                            sequence_length=sequence_length,
         | 
| 1157 | 
            +
                            target_length=past_key_values.get_max_length(),
         | 
| 1158 | 
            +
                            dtype=dtype,
         | 
| 1159 | 
            +
                            device=device,
         | 
| 1160 | 
            +
                            min_dtype=min_dtype,
         | 
| 1161 | 
            +
                            cache_position=cache_position,
         | 
| 1162 | 
            +
                            batch_size=batch_size,
         | 
| 1163 | 
            +
                        )
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
                    model_inputs.update(
         | 
| 1166 | 
            +
                        {
         | 
| 1167 | 
            +
                            "position_ids": position_ids,
         | 
| 1168 | 
            +
                            "cache_position": cache_position,
         | 
| 1169 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1170 | 
            +
                            "use_cache": use_cache,
         | 
| 1171 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1172 | 
            +
                        }
         | 
| 1173 | 
            +
                    )
         | 
| 1174 | 
            +
                    return model_inputs
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
             | 
| 1177 | 
            +
            @add_start_docstrings(
         | 
| 1178 | 
            +
                """
         | 
| 1179 | 
            +
                The EXAONE Model transformer with a sequence classification head on top (linear layer).
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                [`ExaoneForSequenceClassification`] uses the last token in order to do the classification, as
         | 
| 1182 | 
            +
                other causal models (e.g. GPT-1) do.
         | 
| 1183 | 
            +
             | 
| 1184 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1185 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
         | 
| 1186 | 
            +
                row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
         | 
| 1187 | 
            +
                guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
         | 
| 1188 | 
            +
                the last value in each row of the batch).
         | 
| 1189 | 
            +
                """,
         | 
| 1190 | 
            +
                EXAONE_START_DOCSTRING,
         | 
| 1191 | 
            +
            )
         | 
| 1192 | 
            +
            class ExaoneForSequenceClassification(ExaonePreTrainedModel):
         | 
| 1193 | 
            +
                def __init__(self, config):
         | 
| 1194 | 
            +
                    super().__init__(config)
         | 
| 1195 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1196 | 
            +
                    self.transformer = ExaoneModel(config)
         | 
| 1197 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1198 | 
            +
             | 
| 1199 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1200 | 
            +
                    self.post_init()
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
                @add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
         | 
| 1203 | 
            +
                @add_code_sample_docstrings(
         | 
| 1204 | 
            +
                    checkpoint=_CHECKPOINT_FOR_DOC,
         | 
| 1205 | 
            +
                    output_type=SequenceClassifierOutputWithPast,
         | 
| 1206 | 
            +
                    config_class=_CONFIG_FOR_DOC,
         | 
| 1207 | 
            +
                )
         | 
| 1208 | 
            +
                def forward(
         | 
| 1209 | 
            +
                    self,
         | 
| 1210 | 
            +
                    input_ids: Optional[torch.Tensor] = None,
         | 
| 1211 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1212 | 
            +
                    position_ids: Optional[torch.Tensor] = None,
         | 
| 1213 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 1214 | 
            +
                    inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 1215 | 
            +
                    labels: Optional[torch.Tensor] = None,
         | 
| 1216 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1217 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1218 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1219 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1220 | 
            +
                ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
         | 
| 1221 | 
            +
                    r"""
         | 
| 1222 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1223 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1224 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1225 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1226 | 
            +
                    """
         | 
| 1227 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1228 | 
            +
             | 
| 1229 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 1230 | 
            +
                        input_ids,
         | 
| 1231 | 
            +
                        attention_mask=attention_mask,
         | 
| 1232 | 
            +
                        position_ids=position_ids,
         | 
| 1233 | 
            +
                        past_key_values=past_key_values,
         | 
| 1234 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1235 | 
            +
                        use_cache=use_cache,
         | 
| 1236 | 
            +
                        output_attentions=output_attentions,
         | 
| 1237 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1238 | 
            +
                        return_dict=return_dict,
         | 
| 1239 | 
            +
                    )
         | 
| 1240 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1241 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1242 | 
            +
             | 
| 1243 | 
            +
                    if input_ids is not None:
         | 
| 1244 | 
            +
                        batch_size, sequence_length = input_ids.shape[:2]
         | 
| 1245 | 
            +
                    else:
         | 
| 1246 | 
            +
                        batch_size, sequence_length = inputs_embeds.shape[:2]
         | 
| 1247 | 
            +
             | 
| 1248 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1249 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1250 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1251 | 
            +
                        sequence_lengths = -1
         | 
| 1252 | 
            +
                    else:
         | 
| 1253 | 
            +
                        if input_ids is not None:
         | 
| 1254 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1255 | 
            +
                            sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
         | 
| 1256 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1257 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1258 | 
            +
                        else:
         | 
| 1259 | 
            +
                            sequence_lengths = -1
         | 
| 1260 | 
            +
                            logger.warning(
         | 
| 1261 | 
            +
                                f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
         | 
| 1262 | 
            +
                                "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
         | 
| 1263 | 
            +
                            )
         | 
| 1264 | 
            +
             | 
| 1265 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1266 | 
            +
             | 
| 1267 | 
            +
                    loss = None
         | 
| 1268 | 
            +
                    if labels is not None:
         | 
| 1269 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1270 | 
            +
                        if self.config.problem_type is None:
         | 
| 1271 | 
            +
                            if self.num_labels == 1:
         | 
| 1272 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1273 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1274 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1275 | 
            +
                            else:
         | 
| 1276 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1277 | 
            +
             | 
| 1278 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1279 | 
            +
                            loss_fct = MSELoss()
         | 
| 1280 | 
            +
                            if self.num_labels == 1:
         | 
| 1281 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1282 | 
            +
                            else:
         | 
| 1283 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1284 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1285 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1286 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1287 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1288 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1289 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1290 | 
            +
                    if not return_dict:
         | 
| 1291 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1292 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1293 | 
            +
             | 
| 1294 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1295 | 
            +
                        loss=loss,
         | 
| 1296 | 
            +
                        logits=pooled_logits,
         | 
| 1297 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1298 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1299 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1300 | 
            +
                    )
         | 
| 1301 | 
            +
             | 
| 1302 | 
            +
             | 
| 1303 | 
            +
            @add_start_docstrings(
         | 
| 1304 | 
            +
                """
         | 
| 1305 | 
            +
                The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like
         | 
| 1306 | 
            +
                SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
         | 
| 1307 | 
            +
                """,
         | 
| 1308 | 
            +
                EXAONE_START_DOCSTRING,
         | 
| 1309 | 
            +
            )
         | 
| 1310 | 
            +
            class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
         | 
| 1311 | 
            +
                def __init__(self, config):
         | 
| 1312 | 
            +
                    super().__init__(config)
         | 
| 1313 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1314 | 
            +
                    self.transformer = ExaoneModel(config)
         | 
| 1315 | 
            +
                    self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
         | 
| 1316 | 
            +
             | 
| 1317 | 
            +
                    # Model parallel
         | 
| 1318 | 
            +
                    self.model_parallel = False
         | 
| 1319 | 
            +
                    self.device_map = None
         | 
| 1320 | 
            +
             | 
| 1321 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1322 | 
            +
                    self.post_init()
         | 
| 1323 | 
            +
             | 
| 1324 | 
            +
                def forward(
         | 
| 1325 | 
            +
                    self,
         | 
| 1326 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 1327 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 1328 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1329 | 
            +
                    past_key_values: Optional[Cache] = None,
         | 
| 1330 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1331 | 
            +
                    start_positions: Optional[torch.LongTensor] = None,
         | 
| 1332 | 
            +
                    end_positions: Optional[torch.LongTensor] = None,
         | 
| 1333 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1334 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1335 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1336 | 
            +
                ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
         | 
| 1337 | 
            +
                    r"""
         | 
| 1338 | 
            +
                    start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1339 | 
            +
                        Labels for position (index) of the start of the labelled span for computing the token classification loss.
         | 
| 1340 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
         | 
| 1341 | 
            +
                        sequence are not taken into account for computing the loss.
         | 
| 1342 | 
            +
                    end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1343 | 
            +
                        Labels for position (index) of the end of the labelled span for computing the token classification loss.
         | 
| 1344 | 
            +
                        Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
         | 
| 1345 | 
            +
                        sequence are not taken into account for computing the loss.
         | 
| 1346 | 
            +
                    """
         | 
| 1347 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1348 | 
            +
             | 
| 1349 | 
            +
                    outputs = self.transformer(
         | 
| 1350 | 
            +
                        input_ids,
         | 
| 1351 | 
            +
                        attention_mask=attention_mask,
         | 
| 1352 | 
            +
                        position_ids=position_ids,
         | 
| 1353 | 
            +
                        past_key_values=past_key_values,
         | 
| 1354 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1355 | 
            +
                        output_attentions=output_attentions,
         | 
| 1356 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1357 | 
            +
                        return_dict=return_dict,
         | 
| 1358 | 
            +
                    )
         | 
| 1359 | 
            +
             | 
| 1360 | 
            +
                    sequence_output = outputs[0]
         | 
| 1361 | 
            +
             | 
| 1362 | 
            +
                    logits = self.qa_outputs(sequence_output)
         | 
| 1363 | 
            +
                    start_logits, end_logits = logits.split(1, dim=-1)
         | 
| 1364 | 
            +
                    start_logits = start_logits.squeeze(-1).contiguous()
         | 
| 1365 | 
            +
                    end_logits = end_logits.squeeze(-1).contiguous()
         | 
| 1366 | 
            +
             | 
| 1367 | 
            +
                    total_loss = None
         | 
| 1368 | 
            +
                    if start_positions is not None and end_positions is not None:
         | 
| 1369 | 
            +
                        # If we are on multi-GPU, split add a dimension
         | 
| 1370 | 
            +
                        if len(start_positions.size()) > 1:
         | 
| 1371 | 
            +
                            start_positions = start_positions.squeeze(-1).to(start_logits.device)
         | 
| 1372 | 
            +
                        if len(end_positions.size()) > 1:
         | 
| 1373 | 
            +
                            end_positions = end_positions.squeeze(-1).to(end_logits.device)
         | 
| 1374 | 
            +
                        # sometimes the start/end positions are outside our model inputs, we ignore these terms
         | 
| 1375 | 
            +
                        ignored_index = start_logits.size(1)
         | 
| 1376 | 
            +
                        start_positions = start_positions.clamp(0, ignored_index)
         | 
| 1377 | 
            +
                        end_positions = end_positions.clamp(0, ignored_index)
         | 
| 1378 | 
            +
             | 
| 1379 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
         | 
| 1380 | 
            +
                        start_loss = loss_fct(start_logits, start_positions)
         | 
| 1381 | 
            +
                        end_loss = loss_fct(end_logits, end_positions)
         | 
| 1382 | 
            +
                        total_loss = (start_loss + end_loss) / 2
         | 
| 1383 | 
            +
             | 
| 1384 | 
            +
                    if not return_dict:
         | 
| 1385 | 
            +
                        output = (start_logits, end_logits) + outputs[2:]
         | 
| 1386 | 
            +
                        return ((total_loss,) + output) if total_loss is not None else output
         | 
| 1387 | 
            +
             | 
| 1388 | 
            +
                    return QuestionAnsweringModelOutput(
         | 
| 1389 | 
            +
                        loss=total_loss,
         | 
| 1390 | 
            +
                        start_logits=start_logits,
         | 
| 1391 | 
            +
                        end_logits=end_logits,
         | 
| 1392 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1393 | 
            +
                        attentions=outputs.attentions,
         | 
| 1394 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "[BOS]",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "[|endofturn|]",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "pad_token": {
         | 
| 17 | 
            +
                "content": "[PAD]",
         | 
| 18 | 
            +
                "lstrip": false,
         | 
| 19 | 
            +
                "normalized": false,
         | 
| 20 | 
            +
                "rstrip": false,
         | 
| 21 | 
            +
                "single_word": false
         | 
| 22 | 
            +
              },
         | 
| 23 | 
            +
              "unk_token": {
         | 
| 24 | 
            +
                "content": "[UNK]",
         | 
| 25 | 
            +
                "lstrip": false,
         | 
| 26 | 
            +
                "normalized": false,
         | 
| 27 | 
            +
                "rstrip": false,
         | 
| 28 | 
            +
                "single_word": false
         | 
| 29 | 
            +
              }
         | 
| 30 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,3222 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_prefix_space": false,
         | 
| 3 | 
            +
              "added_tokens_decoder": {
         | 
| 4 | 
            +
                "0": {
         | 
| 5 | 
            +
                  "content": "[PAD]",
         | 
| 6 | 
            +
                  "lstrip": false,
         | 
| 7 | 
            +
                  "normalized": false,
         | 
| 8 | 
            +
                  "rstrip": false,
         | 
| 9 | 
            +
                  "single_word": false,
         | 
| 10 | 
            +
                  "special": true
         | 
| 11 | 
            +
                },
         | 
| 12 | 
            +
                "1": {
         | 
| 13 | 
            +
                  "content": "[BOS]",
         | 
| 14 | 
            +
                  "lstrip": false,
         | 
| 15 | 
            +
                  "normalized": false,
         | 
| 16 | 
            +
                  "rstrip": false,
         | 
| 17 | 
            +
                  "single_word": false,
         | 
| 18 | 
            +
                  "special": true
         | 
| 19 | 
            +
                },
         | 
| 20 | 
            +
                "2": {
         | 
| 21 | 
            +
                  "content": "[EOS]",
         | 
| 22 | 
            +
                  "lstrip": false,
         | 
| 23 | 
            +
                  "normalized": false,
         | 
| 24 | 
            +
                  "rstrip": false,
         | 
| 25 | 
            +
                  "single_word": false,
         | 
| 26 | 
            +
                  "special": true
         | 
| 27 | 
            +
                },
         | 
| 28 | 
            +
                "3": {
         | 
| 29 | 
            +
                  "content": "[UNK]",
         | 
| 30 | 
            +
                  "lstrip": false,
         | 
| 31 | 
            +
                  "normalized": false,
         | 
| 32 | 
            +
                  "rstrip": false,
         | 
| 33 | 
            +
                  "single_word": false,
         | 
| 34 | 
            +
                  "special": true
         | 
| 35 | 
            +
                },
         | 
| 36 | 
            +
                "4": {
         | 
| 37 | 
            +
                  "content": "                               ",
         | 
| 38 | 
            +
                  "lstrip": false,
         | 
| 39 | 
            +
                  "normalized": false,
         | 
| 40 | 
            +
                  "rstrip": false,
         | 
| 41 | 
            +
                  "single_word": false,
         | 
| 42 | 
            +
                  "special": false
         | 
| 43 | 
            +
                },
         | 
| 44 | 
            +
                "5": {
         | 
| 45 | 
            +
                  "content": "                              ",
         | 
| 46 | 
            +
                  "lstrip": false,
         | 
| 47 | 
            +
                  "normalized": false,
         | 
| 48 | 
            +
                  "rstrip": false,
         | 
| 49 | 
            +
                  "single_word": false,
         | 
| 50 | 
            +
                  "special": false
         | 
| 51 | 
            +
                },
         | 
| 52 | 
            +
                "6": {
         | 
| 53 | 
            +
                  "content": "                             ",
         | 
| 54 | 
            +
                  "lstrip": false,
         | 
| 55 | 
            +
                  "normalized": false,
         | 
| 56 | 
            +
                  "rstrip": false,
         | 
| 57 | 
            +
                  "single_word": false,
         | 
| 58 | 
            +
                  "special": false
         | 
| 59 | 
            +
                },
         | 
| 60 | 
            +
                "7": {
         | 
| 61 | 
            +
                  "content": "                            ",
         | 
| 62 | 
            +
                  "lstrip": false,
         | 
| 63 | 
            +
                  "normalized": false,
         | 
| 64 | 
            +
                  "rstrip": false,
         | 
| 65 | 
            +
                  "single_word": false,
         | 
| 66 | 
            +
                  "special": false
         | 
| 67 | 
            +
                },
         | 
| 68 | 
            +
                "8": {
         | 
| 69 | 
            +
                  "content": "                           ",
         | 
| 70 | 
            +
                  "lstrip": false,
         | 
| 71 | 
            +
                  "normalized": false,
         | 
| 72 | 
            +
                  "rstrip": false,
         | 
| 73 | 
            +
                  "single_word": false,
         | 
| 74 | 
            +
                  "special": false
         | 
| 75 | 
            +
                },
         | 
| 76 | 
            +
                "9": {
         | 
| 77 | 
            +
                  "content": "                          ",
         | 
| 78 | 
            +
                  "lstrip": false,
         | 
| 79 | 
            +
                  "normalized": false,
         | 
| 80 | 
            +
                  "rstrip": false,
         | 
| 81 | 
            +
                  "single_word": false,
         | 
| 82 | 
            +
                  "special": false
         | 
| 83 | 
            +
                },
         | 
| 84 | 
            +
                "10": {
         | 
| 85 | 
            +
                  "content": "                         ",
         | 
| 86 | 
            +
                  "lstrip": false,
         | 
| 87 | 
            +
                  "normalized": false,
         | 
| 88 | 
            +
                  "rstrip": false,
         | 
| 89 | 
            +
                  "single_word": false,
         | 
| 90 | 
            +
                  "special": false
         | 
| 91 | 
            +
                },
         | 
| 92 | 
            +
                "11": {
         | 
| 93 | 
            +
                  "content": "                        ",
         | 
| 94 | 
            +
                  "lstrip": false,
         | 
| 95 | 
            +
                  "normalized": false,
         | 
| 96 | 
            +
                  "rstrip": false,
         | 
| 97 | 
            +
                  "single_word": false,
         | 
| 98 | 
            +
                  "special": false
         | 
| 99 | 
            +
                },
         | 
| 100 | 
            +
                "12": {
         | 
| 101 | 
            +
                  "content": "                       ",
         | 
| 102 | 
            +
                  "lstrip": false,
         | 
| 103 | 
            +
                  "normalized": false,
         | 
| 104 | 
            +
                  "rstrip": false,
         | 
| 105 | 
            +
                  "single_word": false,
         | 
| 106 | 
            +
                  "special": false
         | 
| 107 | 
            +
                },
         | 
| 108 | 
            +
                "13": {
         | 
| 109 | 
            +
                  "content": "                      ",
         | 
| 110 | 
            +
                  "lstrip": false,
         | 
| 111 | 
            +
                  "normalized": false,
         | 
| 112 | 
            +
                  "rstrip": false,
         | 
| 113 | 
            +
                  "single_word": false,
         | 
| 114 | 
            +
                  "special": false
         | 
| 115 | 
            +
                },
         | 
| 116 | 
            +
                "14": {
         | 
| 117 | 
            +
                  "content": "                     ",
         | 
| 118 | 
            +
                  "lstrip": false,
         | 
| 119 | 
            +
                  "normalized": false,
         | 
| 120 | 
            +
                  "rstrip": false,
         | 
| 121 | 
            +
                  "single_word": false,
         | 
| 122 | 
            +
                  "special": false
         | 
| 123 | 
            +
                },
         | 
| 124 | 
            +
                "15": {
         | 
| 125 | 
            +
                  "content": "                    ",
         | 
| 126 | 
            +
                  "lstrip": false,
         | 
| 127 | 
            +
                  "normalized": false,
         | 
| 128 | 
            +
                  "rstrip": false,
         | 
| 129 | 
            +
                  "single_word": false,
         | 
| 130 | 
            +
                  "special": false
         | 
| 131 | 
            +
                },
         | 
| 132 | 
            +
                "16": {
         | 
| 133 | 
            +
                  "content": "                   ",
         | 
| 134 | 
            +
                  "lstrip": false,
         | 
| 135 | 
            +
                  "normalized": false,
         | 
| 136 | 
            +
                  "rstrip": false,
         | 
| 137 | 
            +
                  "single_word": false,
         | 
| 138 | 
            +
                  "special": false
         | 
| 139 | 
            +
                },
         | 
| 140 | 
            +
                "17": {
         | 
| 141 | 
            +
                  "content": "                  ",
         | 
| 142 | 
            +
                  "lstrip": false,
         | 
| 143 | 
            +
                  "normalized": false,
         | 
| 144 | 
            +
                  "rstrip": false,
         | 
| 145 | 
            +
                  "single_word": false,
         | 
| 146 | 
            +
                  "special": false
         | 
| 147 | 
            +
                },
         | 
| 148 | 
            +
                "18": {
         | 
| 149 | 
            +
                  "content": "                 ",
         | 
| 150 | 
            +
                  "lstrip": false,
         | 
| 151 | 
            +
                  "normalized": false,
         | 
| 152 | 
            +
                  "rstrip": false,
         | 
| 153 | 
            +
                  "single_word": false,
         | 
| 154 | 
            +
                  "special": false
         | 
| 155 | 
            +
                },
         | 
| 156 | 
            +
                "19": {
         | 
| 157 | 
            +
                  "content": "                ",
         | 
| 158 | 
            +
                  "lstrip": false,
         | 
| 159 | 
            +
                  "normalized": false,
         | 
| 160 | 
            +
                  "rstrip": false,
         | 
| 161 | 
            +
                  "single_word": false,
         | 
| 162 | 
            +
                  "special": false
         | 
| 163 | 
            +
                },
         | 
| 164 | 
            +
                "20": {
         | 
| 165 | 
            +
                  "content": "               ",
         | 
| 166 | 
            +
                  "lstrip": false,
         | 
| 167 | 
            +
                  "normalized": false,
         | 
| 168 | 
            +
                  "rstrip": false,
         | 
| 169 | 
            +
                  "single_word": false,
         | 
| 170 | 
            +
                  "special": false
         | 
| 171 | 
            +
                },
         | 
| 172 | 
            +
                "21": {
         | 
| 173 | 
            +
                  "content": "              ",
         | 
| 174 | 
            +
                  "lstrip": false,
         | 
| 175 | 
            +
                  "normalized": false,
         | 
| 176 | 
            +
                  "rstrip": false,
         | 
| 177 | 
            +
                  "single_word": false,
         | 
| 178 | 
            +
                  "special": false
         | 
| 179 | 
            +
                },
         | 
| 180 | 
            +
                "22": {
         | 
| 181 | 
            +
                  "content": "             ",
         | 
| 182 | 
            +
                  "lstrip": false,
         | 
| 183 | 
            +
                  "normalized": false,
         | 
| 184 | 
            +
                  "rstrip": false,
         | 
| 185 | 
            +
                  "single_word": false,
         | 
| 186 | 
            +
                  "special": false
         | 
| 187 | 
            +
                },
         | 
| 188 | 
            +
                "23": {
         | 
| 189 | 
            +
                  "content": "            ",
         | 
| 190 | 
            +
                  "lstrip": false,
         | 
| 191 | 
            +
                  "normalized": false,
         | 
| 192 | 
            +
                  "rstrip": false,
         | 
| 193 | 
            +
                  "single_word": false,
         | 
| 194 | 
            +
                  "special": false
         | 
| 195 | 
            +
                },
         | 
| 196 | 
            +
                "24": {
         | 
| 197 | 
            +
                  "content": "           ",
         | 
| 198 | 
            +
                  "lstrip": false,
         | 
| 199 | 
            +
                  "normalized": false,
         | 
| 200 | 
            +
                  "rstrip": false,
         | 
| 201 | 
            +
                  "single_word": false,
         | 
| 202 | 
            +
                  "special": false
         | 
| 203 | 
            +
                },
         | 
| 204 | 
            +
                "25": {
         | 
| 205 | 
            +
                  "content": "          ",
         | 
| 206 | 
            +
                  "lstrip": false,
         | 
| 207 | 
            +
                  "normalized": false,
         | 
| 208 | 
            +
                  "rstrip": false,
         | 
| 209 | 
            +
                  "single_word": false,
         | 
| 210 | 
            +
                  "special": false
         | 
| 211 | 
            +
                },
         | 
| 212 | 
            +
                "26": {
         | 
| 213 | 
            +
                  "content": "         ",
         | 
| 214 | 
            +
                  "lstrip": false,
         | 
| 215 | 
            +
                  "normalized": false,
         | 
| 216 | 
            +
                  "rstrip": false,
         | 
| 217 | 
            +
                  "single_word": false,
         | 
| 218 | 
            +
                  "special": false
         | 
| 219 | 
            +
                },
         | 
| 220 | 
            +
                "27": {
         | 
| 221 | 
            +
                  "content": "        ",
         | 
| 222 | 
            +
                  "lstrip": false,
         | 
| 223 | 
            +
                  "normalized": false,
         | 
| 224 | 
            +
                  "rstrip": false,
         | 
| 225 | 
            +
                  "single_word": false,
         | 
| 226 | 
            +
                  "special": false
         | 
| 227 | 
            +
                },
         | 
| 228 | 
            +
                "28": {
         | 
| 229 | 
            +
                  "content": "       ",
         | 
| 230 | 
            +
                  "lstrip": false,
         | 
| 231 | 
            +
                  "normalized": false,
         | 
| 232 | 
            +
                  "rstrip": false,
         | 
| 233 | 
            +
                  "single_word": false,
         | 
| 234 | 
            +
                  "special": false
         | 
| 235 | 
            +
                },
         | 
| 236 | 
            +
                "29": {
         | 
| 237 | 
            +
                  "content": "      ",
         | 
| 238 | 
            +
                  "lstrip": false,
         | 
| 239 | 
            +
                  "normalized": false,
         | 
| 240 | 
            +
                  "rstrip": false,
         | 
| 241 | 
            +
                  "single_word": false,
         | 
| 242 | 
            +
                  "special": false
         | 
| 243 | 
            +
                },
         | 
| 244 | 
            +
                "30": {
         | 
| 245 | 
            +
                  "content": "     ",
         | 
| 246 | 
            +
                  "lstrip": false,
         | 
| 247 | 
            +
                  "normalized": false,
         | 
| 248 | 
            +
                  "rstrip": false,
         | 
| 249 | 
            +
                  "single_word": false,
         | 
| 250 | 
            +
                  "special": false
         | 
| 251 | 
            +
                },
         | 
| 252 | 
            +
                "31": {
         | 
| 253 | 
            +
                  "content": "    ",
         | 
| 254 | 
            +
                  "lstrip": false,
         | 
| 255 | 
            +
                  "normalized": false,
         | 
| 256 | 
            +
                  "rstrip": false,
         | 
| 257 | 
            +
                  "single_word": false,
         | 
| 258 | 
            +
                  "special": false
         | 
| 259 | 
            +
                },
         | 
| 260 | 
            +
                "32": {
         | 
| 261 | 
            +
                  "content": "   ",
         | 
| 262 | 
            +
                  "lstrip": false,
         | 
| 263 | 
            +
                  "normalized": false,
         | 
| 264 | 
            +
                  "rstrip": false,
         | 
| 265 | 
            +
                  "single_word": false,
         | 
| 266 | 
            +
                  "special": false
         | 
| 267 | 
            +
                },
         | 
| 268 | 
            +
                "33": {
         | 
| 269 | 
            +
                  "content": "  ",
         | 
| 270 | 
            +
                  "lstrip": false,
         | 
| 271 | 
            +
                  "normalized": false,
         | 
| 272 | 
            +
                  "rstrip": false,
         | 
| 273 | 
            +
                  "single_word": false,
         | 
| 274 | 
            +
                  "special": false
         | 
| 275 | 
            +
                },
         | 
| 276 | 
            +
                "34": {
         | 
| 277 | 
            +
                  "content": "\t\t\t\t\t\t\t\t\t",
         | 
| 278 | 
            +
                  "lstrip": false,
         | 
| 279 | 
            +
                  "normalized": false,
         | 
| 280 | 
            +
                  "rstrip": false,
         | 
| 281 | 
            +
                  "single_word": false,
         | 
| 282 | 
            +
                  "special": false
         | 
| 283 | 
            +
                },
         | 
| 284 | 
            +
                "35": {
         | 
| 285 | 
            +
                  "content": "\t\t\t\t\t\t\t\t",
         | 
| 286 | 
            +
                  "lstrip": false,
         | 
| 287 | 
            +
                  "normalized": false,
         | 
| 288 | 
            +
                  "rstrip": false,
         | 
| 289 | 
            +
                  "single_word": false,
         | 
| 290 | 
            +
                  "special": false
         | 
| 291 | 
            +
                },
         | 
| 292 | 
            +
                "36": {
         | 
| 293 | 
            +
                  "content": "\t\t\t\t\t\t\t",
         | 
| 294 | 
            +
                  "lstrip": false,
         | 
| 295 | 
            +
                  "normalized": false,
         | 
| 296 | 
            +
                  "rstrip": false,
         | 
| 297 | 
            +
                  "single_word": false,
         | 
| 298 | 
            +
                  "special": false
         | 
| 299 | 
            +
                },
         | 
| 300 | 
            +
                "37": {
         | 
| 301 | 
            +
                  "content": "\t\t\t\t\t\t",
         | 
| 302 | 
            +
                  "lstrip": false,
         | 
| 303 | 
            +
                  "normalized": false,
         | 
| 304 | 
            +
                  "rstrip": false,
         | 
| 305 | 
            +
                  "single_word": false,
         | 
| 306 | 
            +
                  "special": false
         | 
| 307 | 
            +
                },
         | 
| 308 | 
            +
                "38": {
         | 
| 309 | 
            +
                  "content": "\t\t\t\t\t",
         | 
| 310 | 
            +
                  "lstrip": false,
         | 
| 311 | 
            +
                  "normalized": false,
         | 
| 312 | 
            +
                  "rstrip": false,
         | 
| 313 | 
            +
                  "single_word": false,
         | 
| 314 | 
            +
                  "special": false
         | 
| 315 | 
            +
                },
         | 
| 316 | 
            +
                "39": {
         | 
| 317 | 
            +
                  "content": "\t\t\t\t",
         | 
| 318 | 
            +
                  "lstrip": false,
         | 
| 319 | 
            +
                  "normalized": false,
         | 
| 320 | 
            +
                  "rstrip": false,
         | 
| 321 | 
            +
                  "single_word": false,
         | 
| 322 | 
            +
                  "special": false
         | 
| 323 | 
            +
                },
         | 
| 324 | 
            +
                "40": {
         | 
| 325 | 
            +
                  "content": "\t\t\t",
         | 
| 326 | 
            +
                  "lstrip": false,
         | 
| 327 | 
            +
                  "normalized": false,
         | 
| 328 | 
            +
                  "rstrip": false,
         | 
| 329 | 
            +
                  "single_word": false,
         | 
| 330 | 
            +
                  "special": false
         | 
| 331 | 
            +
                },
         | 
| 332 | 
            +
                "41": {
         | 
| 333 | 
            +
                  "content": "\t\t",
         | 
| 334 | 
            +
                  "lstrip": false,
         | 
| 335 | 
            +
                  "normalized": false,
         | 
| 336 | 
            +
                  "rstrip": false,
         | 
| 337 | 
            +
                  "single_word": false,
         | 
| 338 | 
            +
                  "special": false
         | 
| 339 | 
            +
                },
         | 
| 340 | 
            +
                "42": {
         | 
| 341 | 
            +
                  "content": "<|endoftext|>",
         | 
| 342 | 
            +
                  "lstrip": false,
         | 
| 343 | 
            +
                  "normalized": false,
         | 
| 344 | 
            +
                  "rstrip": false,
         | 
| 345 | 
            +
                  "single_word": false,
         | 
| 346 | 
            +
                  "special": true
         | 
| 347 | 
            +
                },
         | 
| 348 | 
            +
                "43": {
         | 
| 349 | 
            +
                  "content": "<|c|>",
         | 
| 350 | 
            +
                  "lstrip": false,
         | 
| 351 | 
            +
                  "normalized": false,
         | 
| 352 | 
            +
                  "rstrip": false,
         | 
| 353 | 
            +
                  "single_word": false,
         | 
| 354 | 
            +
                  "special": true
         | 
| 355 | 
            +
                },
         | 
| 356 | 
            +
                "44": {
         | 
| 357 | 
            +
                  "content": "<|c++|>",
         | 
| 358 | 
            +
                  "lstrip": false,
         | 
| 359 | 
            +
                  "normalized": false,
         | 
| 360 | 
            +
                  "rstrip": false,
         | 
| 361 | 
            +
                  "single_word": false,
         | 
| 362 | 
            +
                  "special": true
         | 
| 363 | 
            +
                },
         | 
| 364 | 
            +
                "45": {
         | 
| 365 | 
            +
                  "content": "<|python|>",
         | 
| 366 | 
            +
                  "lstrip": false,
         | 
| 367 | 
            +
                  "normalized": false,
         | 
| 368 | 
            +
                  "rstrip": false,
         | 
| 369 | 
            +
                  "single_word": false,
         | 
| 370 | 
            +
                  "special": true
         | 
| 371 | 
            +
                },
         | 
| 372 | 
            +
                "46": {
         | 
| 373 | 
            +
                  "content": "<|javascript|>",
         | 
| 374 | 
            +
                  "lstrip": false,
         | 
| 375 | 
            +
                  "normalized": false,
         | 
| 376 | 
            +
                  "rstrip": false,
         | 
| 377 | 
            +
                  "single_word": false,
         | 
| 378 | 
            +
                  "special": true
         | 
| 379 | 
            +
                },
         | 
| 380 | 
            +
                "47": {
         | 
| 381 | 
            +
                  "content": "<|markdown|>",
         | 
| 382 | 
            +
                  "lstrip": false,
         | 
| 383 | 
            +
                  "normalized": false,
         | 
| 384 | 
            +
                  "rstrip": false,
         | 
| 385 | 
            +
                  "single_word": false,
         | 
| 386 | 
            +
                  "special": true
         | 
| 387 | 
            +
                },
         | 
| 388 | 
            +
                "48": {
         | 
| 389 | 
            +
                  "content": "<|html|>",
         | 
| 390 | 
            +
                  "lstrip": false,
         | 
| 391 | 
            +
                  "normalized": false,
         | 
| 392 | 
            +
                  "rstrip": false,
         | 
| 393 | 
            +
                  "single_word": false,
         | 
| 394 | 
            +
                  "special": true
         | 
| 395 | 
            +
                },
         | 
| 396 | 
            +
                "49": {
         | 
| 397 | 
            +
                  "content": "<|css|>",
         | 
| 398 | 
            +
                  "lstrip": false,
         | 
| 399 | 
            +
                  "normalized": false,
         | 
| 400 | 
            +
                  "rstrip": false,
         | 
| 401 | 
            +
                  "single_word": false,
         | 
| 402 | 
            +
                  "special": true
         | 
| 403 | 
            +
                },
         | 
| 404 | 
            +
                "50": {
         | 
| 405 | 
            +
                  "content": "<|vue|>",
         | 
| 406 | 
            +
                  "lstrip": false,
         | 
| 407 | 
            +
                  "normalized": false,
         | 
| 408 | 
            +
                  "rstrip": false,
         | 
| 409 | 
            +
                  "single_word": false,
         | 
| 410 | 
            +
                  "special": true
         | 
| 411 | 
            +
                },
         | 
| 412 | 
            +
                "51": {
         | 
| 413 | 
            +
                  "content": "<|java|>",
         | 
| 414 | 
            +
                  "lstrip": false,
         | 
| 415 | 
            +
                  "normalized": false,
         | 
| 416 | 
            +
                  "rstrip": false,
         | 
| 417 | 
            +
                  "single_word": false,
         | 
| 418 | 
            +
                  "special": true
         | 
| 419 | 
            +
                },
         | 
| 420 | 
            +
                "52": {
         | 
| 421 | 
            +
                  "content": "PI:URL",
         | 
| 422 | 
            +
                  "lstrip": false,
         | 
| 423 | 
            +
                  "normalized": false,
         | 
| 424 | 
            +
                  "rstrip": false,
         | 
| 425 | 
            +
                  "single_word": false,
         | 
| 426 | 
            +
                  "special": true
         | 
| 427 | 
            +
                },
         | 
| 428 | 
            +
                "53": {
         | 
| 429 | 
            +
                  "content": "PI:EMAIL",
         | 
| 430 | 
            +
                  "lstrip": false,
         | 
| 431 | 
            +
                  "normalized": false,
         | 
| 432 | 
            +
                  "rstrip": false,
         | 
| 433 | 
            +
                  "single_word": false,
         | 
| 434 | 
            +
                  "special": true
         | 
| 435 | 
            +
                },
         | 
| 436 | 
            +
                "54": {
         | 
| 437 | 
            +
                  "content": "PI:ACCOUNT_NUM",
         | 
| 438 | 
            +
                  "lstrip": false,
         | 
| 439 | 
            +
                  "normalized": false,
         | 
| 440 | 
            +
                  "rstrip": false,
         | 
| 441 | 
            +
                  "single_word": false,
         | 
| 442 | 
            +
                  "special": true
         | 
| 443 | 
            +
                },
         | 
| 444 | 
            +
                "55": {
         | 
| 445 | 
            +
                  "content": "PI:PHONE_NUM",
         | 
| 446 | 
            +
                  "lstrip": false,
         | 
| 447 | 
            +
                  "normalized": false,
         | 
| 448 | 
            +
                  "rstrip": false,
         | 
| 449 | 
            +
                  "single_word": false,
         | 
| 450 | 
            +
                  "special": true
         | 
| 451 | 
            +
                },
         | 
| 452 | 
            +
                "56": {
         | 
| 453 | 
            +
                  "content": "PI:BUSINESS_NUM",
         | 
| 454 | 
            +
                  "lstrip": false,
         | 
| 455 | 
            +
                  "normalized": false,
         | 
| 456 | 
            +
                  "rstrip": false,
         | 
| 457 | 
            +
                  "single_word": false,
         | 
| 458 | 
            +
                  "special": true
         | 
| 459 | 
            +
                },
         | 
| 460 | 
            +
                "57": {
         | 
| 461 | 
            +
                  "content": "PI:ANNON",
         | 
| 462 | 
            +
                  "lstrip": false,
         | 
| 463 | 
            +
                  "normalized": false,
         | 
| 464 | 
            +
                  "rstrip": false,
         | 
| 465 | 
            +
                  "single_word": false,
         | 
| 466 | 
            +
                  "special": true
         | 
| 467 | 
            +
                },
         | 
| 468 | 
            +
                "58": {
         | 
| 469 | 
            +
                  "content": "PI:KEY",
         | 
| 470 | 
            +
                  "lstrip": false,
         | 
| 471 | 
            +
                  "normalized": false,
         | 
| 472 | 
            +
                  "rstrip": false,
         | 
| 473 | 
            +
                  "single_word": false,
         | 
| 474 | 
            +
                  "special": true
         | 
| 475 | 
            +
                },
         | 
| 476 | 
            +
                "59": {
         | 
| 477 | 
            +
                  "content": "PI:ID",
         | 
| 478 | 
            +
                  "lstrip": false,
         | 
| 479 | 
            +
                  "normalized": false,
         | 
| 480 | 
            +
                  "rstrip": false,
         | 
| 481 | 
            +
                  "single_word": false,
         | 
| 482 | 
            +
                  "special": true
         | 
| 483 | 
            +
                },
         | 
| 484 | 
            +
                "60": {
         | 
| 485 | 
            +
                  "content": "PI:IP_ADDRESS",
         | 
| 486 | 
            +
                  "lstrip": false,
         | 
| 487 | 
            +
                  "normalized": false,
         | 
| 488 | 
            +
                  "rstrip": false,
         | 
| 489 | 
            +
                  "single_word": false,
         | 
| 490 | 
            +
                  "special": true
         | 
| 491 | 
            +
                },
         | 
| 492 | 
            +
                "61": {
         | 
| 493 | 
            +
                  "content": "PI:USER",
         | 
| 494 | 
            +
                  "lstrip": false,
         | 
| 495 | 
            +
                  "normalized": false,
         | 
| 496 | 
            +
                  "rstrip": false,
         | 
| 497 | 
            +
                  "single_word": false,
         | 
| 498 | 
            +
                  "special": true
         | 
| 499 | 
            +
                },
         | 
| 500 | 
            +
                "62": {
         | 
| 501 | 
            +
                  "content": "[unused0]",
         | 
| 502 | 
            +
                  "lstrip": false,
         | 
| 503 | 
            +
                  "normalized": false,
         | 
| 504 | 
            +
                  "rstrip": false,
         | 
| 505 | 
            +
                  "single_word": false,
         | 
| 506 | 
            +
                  "special": true
         | 
| 507 | 
            +
                },
         | 
| 508 | 
            +
                "63": {
         | 
| 509 | 
            +
                  "content": "[unused1]",
         | 
| 510 | 
            +
                  "lstrip": false,
         | 
| 511 | 
            +
                  "normalized": false,
         | 
| 512 | 
            +
                  "rstrip": false,
         | 
| 513 | 
            +
                  "single_word": false,
         | 
| 514 | 
            +
                  "special": true
         | 
| 515 | 
            +
                },
         | 
| 516 | 
            +
                "64": {
         | 
| 517 | 
            +
                  "content": "[unused2]",
         | 
| 518 | 
            +
                  "lstrip": false,
         | 
| 519 | 
            +
                  "normalized": false,
         | 
| 520 | 
            +
                  "rstrip": false,
         | 
| 521 | 
            +
                  "single_word": false,
         | 
| 522 | 
            +
                  "special": true
         | 
| 523 | 
            +
                },
         | 
| 524 | 
            +
                "65": {
         | 
| 525 | 
            +
                  "content": "[unused3]",
         | 
| 526 | 
            +
                  "lstrip": false,
         | 
| 527 | 
            +
                  "normalized": false,
         | 
| 528 | 
            +
                  "rstrip": false,
         | 
| 529 | 
            +
                  "single_word": false,
         | 
| 530 | 
            +
                  "special": true
         | 
| 531 | 
            +
                },
         | 
| 532 | 
            +
                "66": {
         | 
| 533 | 
            +
                  "content": "[unused4]",
         | 
| 534 | 
            +
                  "lstrip": false,
         | 
| 535 | 
            +
                  "normalized": false,
         | 
| 536 | 
            +
                  "rstrip": false,
         | 
| 537 | 
            +
                  "single_word": false,
         | 
| 538 | 
            +
                  "special": true
         | 
| 539 | 
            +
                },
         | 
| 540 | 
            +
                "67": {
         | 
| 541 | 
            +
                  "content": "[unused5]",
         | 
| 542 | 
            +
                  "lstrip": false,
         | 
| 543 | 
            +
                  "normalized": false,
         | 
| 544 | 
            +
                  "rstrip": false,
         | 
| 545 | 
            +
                  "single_word": false,
         | 
| 546 | 
            +
                  "special": true
         | 
| 547 | 
            +
                },
         | 
| 548 | 
            +
                "68": {
         | 
| 549 | 
            +
                  "content": "[unused6]",
         | 
| 550 | 
            +
                  "lstrip": false,
         | 
| 551 | 
            +
                  "normalized": false,
         | 
| 552 | 
            +
                  "rstrip": false,
         | 
| 553 | 
            +
                  "single_word": false,
         | 
| 554 | 
            +
                  "special": true
         | 
| 555 | 
            +
                },
         | 
| 556 | 
            +
                "69": {
         | 
| 557 | 
            +
                  "content": "[unused7]",
         | 
| 558 | 
            +
                  "lstrip": false,
         | 
| 559 | 
            +
                  "normalized": false,
         | 
| 560 | 
            +
                  "rstrip": false,
         | 
| 561 | 
            +
                  "single_word": false,
         | 
| 562 | 
            +
                  "special": true
         | 
| 563 | 
            +
                },
         | 
| 564 | 
            +
                "70": {
         | 
| 565 | 
            +
                  "content": "[unused8]",
         | 
| 566 | 
            +
                  "lstrip": false,
         | 
| 567 | 
            +
                  "normalized": false,
         | 
| 568 | 
            +
                  "rstrip": false,
         | 
| 569 | 
            +
                  "single_word": false,
         | 
| 570 | 
            +
                  "special": true
         | 
| 571 | 
            +
                },
         | 
| 572 | 
            +
                "71": {
         | 
| 573 | 
            +
                  "content": "[unused9]",
         | 
| 574 | 
            +
                  "lstrip": false,
         | 
| 575 | 
            +
                  "normalized": false,
         | 
| 576 | 
            +
                  "rstrip": false,
         | 
| 577 | 
            +
                  "single_word": false,
         | 
| 578 | 
            +
                  "special": true
         | 
| 579 | 
            +
                },
         | 
| 580 | 
            +
                "72": {
         | 
| 581 | 
            +
                  "content": "[unused10]",
         | 
| 582 | 
            +
                  "lstrip": false,
         | 
| 583 | 
            +
                  "normalized": false,
         | 
| 584 | 
            +
                  "rstrip": false,
         | 
| 585 | 
            +
                  "single_word": false,
         | 
| 586 | 
            +
                  "special": true
         | 
| 587 | 
            +
                },
         | 
| 588 | 
            +
                "73": {
         | 
| 589 | 
            +
                  "content": "[unused11]",
         | 
| 590 | 
            +
                  "lstrip": false,
         | 
| 591 | 
            +
                  "normalized": false,
         | 
| 592 | 
            +
                  "rstrip": false,
         | 
| 593 | 
            +
                  "single_word": false,
         | 
| 594 | 
            +
                  "special": true
         | 
| 595 | 
            +
                },
         | 
| 596 | 
            +
                "74": {
         | 
| 597 | 
            +
                  "content": "[unused12]",
         | 
| 598 | 
            +
                  "lstrip": false,
         | 
| 599 | 
            +
                  "normalized": false,
         | 
| 600 | 
            +
                  "rstrip": false,
         | 
| 601 | 
            +
                  "single_word": false,
         | 
| 602 | 
            +
                  "special": true
         | 
| 603 | 
            +
                },
         | 
| 604 | 
            +
                "75": {
         | 
| 605 | 
            +
                  "content": "[unused13]",
         | 
| 606 | 
            +
                  "lstrip": false,
         | 
| 607 | 
            +
                  "normalized": false,
         | 
| 608 | 
            +
                  "rstrip": false,
         | 
| 609 | 
            +
                  "single_word": false,
         | 
| 610 | 
            +
                  "special": true
         | 
| 611 | 
            +
                },
         | 
| 612 | 
            +
                "76": {
         | 
| 613 | 
            +
                  "content": "[unused14]",
         | 
| 614 | 
            +
                  "lstrip": false,
         | 
| 615 | 
            +
                  "normalized": false,
         | 
| 616 | 
            +
                  "rstrip": false,
         | 
| 617 | 
            +
                  "single_word": false,
         | 
| 618 | 
            +
                  "special": true
         | 
| 619 | 
            +
                },
         | 
| 620 | 
            +
                "77": {
         | 
| 621 | 
            +
                  "content": "[unused15]",
         | 
| 622 | 
            +
                  "lstrip": false,
         | 
| 623 | 
            +
                  "normalized": false,
         | 
| 624 | 
            +
                  "rstrip": false,
         | 
| 625 | 
            +
                  "single_word": false,
         | 
| 626 | 
            +
                  "special": true
         | 
| 627 | 
            +
                },
         | 
| 628 | 
            +
                "78": {
         | 
| 629 | 
            +
                  "content": "[unused16]",
         | 
| 630 | 
            +
                  "lstrip": false,
         | 
| 631 | 
            +
                  "normalized": false,
         | 
| 632 | 
            +
                  "rstrip": false,
         | 
| 633 | 
            +
                  "single_word": false,
         | 
| 634 | 
            +
                  "special": true
         | 
| 635 | 
            +
                },
         | 
| 636 | 
            +
                "79": {
         | 
| 637 | 
            +
                  "content": "[unused17]",
         | 
| 638 | 
            +
                  "lstrip": false,
         | 
| 639 | 
            +
                  "normalized": false,
         | 
| 640 | 
            +
                  "rstrip": false,
         | 
| 641 | 
            +
                  "single_word": false,
         | 
| 642 | 
            +
                  "special": true
         | 
| 643 | 
            +
                },
         | 
| 644 | 
            +
                "80": {
         | 
| 645 | 
            +
                  "content": "[unused18]",
         | 
| 646 | 
            +
                  "lstrip": false,
         | 
| 647 | 
            +
                  "normalized": false,
         | 
| 648 | 
            +
                  "rstrip": false,
         | 
| 649 | 
            +
                  "single_word": false,
         | 
| 650 | 
            +
                  "special": true
         | 
| 651 | 
            +
                },
         | 
| 652 | 
            +
                "81": {
         | 
| 653 | 
            +
                  "content": "[unused19]",
         | 
| 654 | 
            +
                  "lstrip": false,
         | 
| 655 | 
            +
                  "normalized": false,
         | 
| 656 | 
            +
                  "rstrip": false,
         | 
| 657 | 
            +
                  "single_word": false,
         | 
| 658 | 
            +
                  "special": true
         | 
| 659 | 
            +
                },
         | 
| 660 | 
            +
                "82": {
         | 
| 661 | 
            +
                  "content": "[unused20]",
         | 
| 662 | 
            +
                  "lstrip": false,
         | 
| 663 | 
            +
                  "normalized": false,
         | 
| 664 | 
            +
                  "rstrip": false,
         | 
| 665 | 
            +
                  "single_word": false,
         | 
| 666 | 
            +
                  "special": true
         | 
| 667 | 
            +
                },
         | 
| 668 | 
            +
                "83": {
         | 
| 669 | 
            +
                  "content": "[unused21]",
         | 
| 670 | 
            +
                  "lstrip": false,
         | 
| 671 | 
            +
                  "normalized": false,
         | 
| 672 | 
            +
                  "rstrip": false,
         | 
| 673 | 
            +
                  "single_word": false,
         | 
| 674 | 
            +
                  "special": true
         | 
| 675 | 
            +
                },
         | 
| 676 | 
            +
                "84": {
         | 
| 677 | 
            +
                  "content": "[unused22]",
         | 
| 678 | 
            +
                  "lstrip": false,
         | 
| 679 | 
            +
                  "normalized": false,
         | 
| 680 | 
            +
                  "rstrip": false,
         | 
| 681 | 
            +
                  "single_word": false,
         | 
| 682 | 
            +
                  "special": true
         | 
| 683 | 
            +
                },
         | 
| 684 | 
            +
                "85": {
         | 
| 685 | 
            +
                  "content": "[unused23]",
         | 
| 686 | 
            +
                  "lstrip": false,
         | 
| 687 | 
            +
                  "normalized": false,
         | 
| 688 | 
            +
                  "rstrip": false,
         | 
| 689 | 
            +
                  "single_word": false,
         | 
| 690 | 
            +
                  "special": true
         | 
| 691 | 
            +
                },
         | 
| 692 | 
            +
                "86": {
         | 
| 693 | 
            +
                  "content": "[unused24]",
         | 
| 694 | 
            +
                  "lstrip": false,
         | 
| 695 | 
            +
                  "normalized": false,
         | 
| 696 | 
            +
                  "rstrip": false,
         | 
| 697 | 
            +
                  "single_word": false,
         | 
| 698 | 
            +
                  "special": true
         | 
| 699 | 
            +
                },
         | 
| 700 | 
            +
                "87": {
         | 
| 701 | 
            +
                  "content": "[unused25]",
         | 
| 702 | 
            +
                  "lstrip": false,
         | 
| 703 | 
            +
                  "normalized": false,
         | 
| 704 | 
            +
                  "rstrip": false,
         | 
| 705 | 
            +
                  "single_word": false,
         | 
| 706 | 
            +
                  "special": true
         | 
| 707 | 
            +
                },
         | 
| 708 | 
            +
                "88": {
         | 
| 709 | 
            +
                  "content": "[unused26]",
         | 
| 710 | 
            +
                  "lstrip": false,
         | 
| 711 | 
            +
                  "normalized": false,
         | 
| 712 | 
            +
                  "rstrip": false,
         | 
| 713 | 
            +
                  "single_word": false,
         | 
| 714 | 
            +
                  "special": true
         | 
| 715 | 
            +
                },
         | 
| 716 | 
            +
                "89": {
         | 
| 717 | 
            +
                  "content": "[unused27]",
         | 
| 718 | 
            +
                  "lstrip": false,
         | 
| 719 | 
            +
                  "normalized": false,
         | 
| 720 | 
            +
                  "rstrip": false,
         | 
| 721 | 
            +
                  "single_word": false,
         | 
| 722 | 
            +
                  "special": true
         | 
| 723 | 
            +
                },
         | 
| 724 | 
            +
                "90": {
         | 
| 725 | 
            +
                  "content": "[unused28]",
         | 
| 726 | 
            +
                  "lstrip": false,
         | 
| 727 | 
            +
                  "normalized": false,
         | 
| 728 | 
            +
                  "rstrip": false,
         | 
| 729 | 
            +
                  "single_word": false,
         | 
| 730 | 
            +
                  "special": true
         | 
| 731 | 
            +
                },
         | 
| 732 | 
            +
                "91": {
         | 
| 733 | 
            +
                  "content": "[unused29]",
         | 
| 734 | 
            +
                  "lstrip": false,
         | 
| 735 | 
            +
                  "normalized": false,
         | 
| 736 | 
            +
                  "rstrip": false,
         | 
| 737 | 
            +
                  "single_word": false,
         | 
| 738 | 
            +
                  "special": true
         | 
| 739 | 
            +
                },
         | 
| 740 | 
            +
                "92": {
         | 
| 741 | 
            +
                  "content": "[unused30]",
         | 
| 742 | 
            +
                  "lstrip": false,
         | 
| 743 | 
            +
                  "normalized": false,
         | 
| 744 | 
            +
                  "rstrip": false,
         | 
| 745 | 
            +
                  "single_word": false,
         | 
| 746 | 
            +
                  "special": true
         | 
| 747 | 
            +
                },
         | 
| 748 | 
            +
                "93": {
         | 
| 749 | 
            +
                  "content": "[unused31]",
         | 
| 750 | 
            +
                  "lstrip": false,
         | 
| 751 | 
            +
                  "normalized": false,
         | 
| 752 | 
            +
                  "rstrip": false,
         | 
| 753 | 
            +
                  "single_word": false,
         | 
| 754 | 
            +
                  "special": true
         | 
| 755 | 
            +
                },
         | 
| 756 | 
            +
                "94": {
         | 
| 757 | 
            +
                  "content": "[unused32]",
         | 
| 758 | 
            +
                  "lstrip": false,
         | 
| 759 | 
            +
                  "normalized": false,
         | 
| 760 | 
            +
                  "rstrip": false,
         | 
| 761 | 
            +
                  "single_word": false,
         | 
| 762 | 
            +
                  "special": true
         | 
| 763 | 
            +
                },
         | 
| 764 | 
            +
                "95": {
         | 
| 765 | 
            +
                  "content": "[unused33]",
         | 
| 766 | 
            +
                  "lstrip": false,
         | 
| 767 | 
            +
                  "normalized": false,
         | 
| 768 | 
            +
                  "rstrip": false,
         | 
| 769 | 
            +
                  "single_word": false,
         | 
| 770 | 
            +
                  "special": true
         | 
| 771 | 
            +
                },
         | 
| 772 | 
            +
                "96": {
         | 
| 773 | 
            +
                  "content": "[unused34]",
         | 
| 774 | 
            +
                  "lstrip": false,
         | 
| 775 | 
            +
                  "normalized": false,
         | 
| 776 | 
            +
                  "rstrip": false,
         | 
| 777 | 
            +
                  "single_word": false,
         | 
| 778 | 
            +
                  "special": true
         | 
| 779 | 
            +
                },
         | 
| 780 | 
            +
                "97": {
         | 
| 781 | 
            +
                  "content": "[unused35]",
         | 
| 782 | 
            +
                  "lstrip": false,
         | 
| 783 | 
            +
                  "normalized": false,
         | 
| 784 | 
            +
                  "rstrip": false,
         | 
| 785 | 
            +
                  "single_word": false,
         | 
| 786 | 
            +
                  "special": true
         | 
| 787 | 
            +
                },
         | 
| 788 | 
            +
                "98": {
         | 
| 789 | 
            +
                  "content": "[unused36]",
         | 
| 790 | 
            +
                  "lstrip": false,
         | 
| 791 | 
            +
                  "normalized": false,
         | 
| 792 | 
            +
                  "rstrip": false,
         | 
| 793 | 
            +
                  "single_word": false,
         | 
| 794 | 
            +
                  "special": true
         | 
| 795 | 
            +
                },
         | 
| 796 | 
            +
                "99": {
         | 
| 797 | 
            +
                  "content": "[unused37]",
         | 
| 798 | 
            +
                  "lstrip": false,
         | 
| 799 | 
            +
                  "normalized": false,
         | 
| 800 | 
            +
                  "rstrip": false,
         | 
| 801 | 
            +
                  "single_word": false,
         | 
| 802 | 
            +
                  "special": true
         | 
| 803 | 
            +
                },
         | 
| 804 | 
            +
                "100": {
         | 
| 805 | 
            +
                  "content": "[unused38]",
         | 
| 806 | 
            +
                  "lstrip": false,
         | 
| 807 | 
            +
                  "normalized": false,
         | 
| 808 | 
            +
                  "rstrip": false,
         | 
| 809 | 
            +
                  "single_word": false,
         | 
| 810 | 
            +
                  "special": true
         | 
| 811 | 
            +
                },
         | 
| 812 | 
            +
                "101": {
         | 
| 813 | 
            +
                  "content": "[unused39]",
         | 
| 814 | 
            +
                  "lstrip": false,
         | 
| 815 | 
            +
                  "normalized": false,
         | 
| 816 | 
            +
                  "rstrip": false,
         | 
| 817 | 
            +
                  "single_word": false,
         | 
| 818 | 
            +
                  "special": true
         | 
| 819 | 
            +
                },
         | 
| 820 | 
            +
                "102": {
         | 
| 821 | 
            +
                  "content": "[unused40]",
         | 
| 822 | 
            +
                  "lstrip": false,
         | 
| 823 | 
            +
                  "normalized": false,
         | 
| 824 | 
            +
                  "rstrip": false,
         | 
| 825 | 
            +
                  "single_word": false,
         | 
| 826 | 
            +
                  "special": true
         | 
| 827 | 
            +
                },
         | 
| 828 | 
            +
                "103": {
         | 
| 829 | 
            +
                  "content": "[unused41]",
         | 
| 830 | 
            +
                  "lstrip": false,
         | 
| 831 | 
            +
                  "normalized": false,
         | 
| 832 | 
            +
                  "rstrip": false,
         | 
| 833 | 
            +
                  "single_word": false,
         | 
| 834 | 
            +
                  "special": true
         | 
| 835 | 
            +
                },
         | 
| 836 | 
            +
                "104": {
         | 
| 837 | 
            +
                  "content": "[unused42]",
         | 
| 838 | 
            +
                  "lstrip": false,
         | 
| 839 | 
            +
                  "normalized": false,
         | 
| 840 | 
            +
                  "rstrip": false,
         | 
| 841 | 
            +
                  "single_word": false,
         | 
| 842 | 
            +
                  "special": true
         | 
| 843 | 
            +
                },
         | 
| 844 | 
            +
                "105": {
         | 
| 845 | 
            +
                  "content": "[unused43]",
         | 
| 846 | 
            +
                  "lstrip": false,
         | 
| 847 | 
            +
                  "normalized": false,
         | 
| 848 | 
            +
                  "rstrip": false,
         | 
| 849 | 
            +
                  "single_word": false,
         | 
| 850 | 
            +
                  "special": true
         | 
| 851 | 
            +
                },
         | 
| 852 | 
            +
                "106": {
         | 
| 853 | 
            +
                  "content": "[unused44]",
         | 
| 854 | 
            +
                  "lstrip": false,
         | 
| 855 | 
            +
                  "normalized": false,
         | 
| 856 | 
            +
                  "rstrip": false,
         | 
| 857 | 
            +
                  "single_word": false,
         | 
| 858 | 
            +
                  "special": true
         | 
| 859 | 
            +
                },
         | 
| 860 | 
            +
                "107": {
         | 
| 861 | 
            +
                  "content": "[unused45]",
         | 
| 862 | 
            +
                  "lstrip": false,
         | 
| 863 | 
            +
                  "normalized": false,
         | 
| 864 | 
            +
                  "rstrip": false,
         | 
| 865 | 
            +
                  "single_word": false,
         | 
| 866 | 
            +
                  "special": true
         | 
| 867 | 
            +
                },
         | 
| 868 | 
            +
                "108": {
         | 
| 869 | 
            +
                  "content": "[unused46]",
         | 
| 870 | 
            +
                  "lstrip": false,
         | 
| 871 | 
            +
                  "normalized": false,
         | 
| 872 | 
            +
                  "rstrip": false,
         | 
| 873 | 
            +
                  "single_word": false,
         | 
| 874 | 
            +
                  "special": true
         | 
| 875 | 
            +
                },
         | 
| 876 | 
            +
                "109": {
         | 
| 877 | 
            +
                  "content": "[unused47]",
         | 
| 878 | 
            +
                  "lstrip": false,
         | 
| 879 | 
            +
                  "normalized": false,
         | 
| 880 | 
            +
                  "rstrip": false,
         | 
| 881 | 
            +
                  "single_word": false,
         | 
| 882 | 
            +
                  "special": true
         | 
| 883 | 
            +
                },
         | 
| 884 | 
            +
                "110": {
         | 
| 885 | 
            +
                  "content": "[unused48]",
         | 
| 886 | 
            +
                  "lstrip": false,
         | 
| 887 | 
            +
                  "normalized": false,
         | 
| 888 | 
            +
                  "rstrip": false,
         | 
| 889 | 
            +
                  "single_word": false,
         | 
| 890 | 
            +
                  "special": true
         | 
| 891 | 
            +
                },
         | 
| 892 | 
            +
                "111": {
         | 
| 893 | 
            +
                  "content": "[unused49]",
         | 
| 894 | 
            +
                  "lstrip": false,
         | 
| 895 | 
            +
                  "normalized": false,
         | 
| 896 | 
            +
                  "rstrip": false,
         | 
| 897 | 
            +
                  "single_word": false,
         | 
| 898 | 
            +
                  "special": true
         | 
| 899 | 
            +
                },
         | 
| 900 | 
            +
                "112": {
         | 
| 901 | 
            +
                  "content": "[unused50]",
         | 
| 902 | 
            +
                  "lstrip": false,
         | 
| 903 | 
            +
                  "normalized": false,
         | 
| 904 | 
            +
                  "rstrip": false,
         | 
| 905 | 
            +
                  "single_word": false,
         | 
| 906 | 
            +
                  "special": true
         | 
| 907 | 
            +
                },
         | 
| 908 | 
            +
                "113": {
         | 
| 909 | 
            +
                  "content": "[unused51]",
         | 
| 910 | 
            +
                  "lstrip": false,
         | 
| 911 | 
            +
                  "normalized": false,
         | 
| 912 | 
            +
                  "rstrip": false,
         | 
| 913 | 
            +
                  "single_word": false,
         | 
| 914 | 
            +
                  "special": true
         | 
| 915 | 
            +
                },
         | 
| 916 | 
            +
                "114": {
         | 
| 917 | 
            +
                  "content": "[unused52]",
         | 
| 918 | 
            +
                  "lstrip": false,
         | 
| 919 | 
            +
                  "normalized": false,
         | 
| 920 | 
            +
                  "rstrip": false,
         | 
| 921 | 
            +
                  "single_word": false,
         | 
| 922 | 
            +
                  "special": true
         | 
| 923 | 
            +
                },
         | 
| 924 | 
            +
                "115": {
         | 
| 925 | 
            +
                  "content": "[unused53]",
         | 
| 926 | 
            +
                  "lstrip": false,
         | 
| 927 | 
            +
                  "normalized": false,
         | 
| 928 | 
            +
                  "rstrip": false,
         | 
| 929 | 
            +
                  "single_word": false,
         | 
| 930 | 
            +
                  "special": true
         | 
| 931 | 
            +
                },
         | 
| 932 | 
            +
                "116": {
         | 
| 933 | 
            +
                  "content": "[unused54]",
         | 
| 934 | 
            +
                  "lstrip": false,
         | 
| 935 | 
            +
                  "normalized": false,
         | 
| 936 | 
            +
                  "rstrip": false,
         | 
| 937 | 
            +
                  "single_word": false,
         | 
| 938 | 
            +
                  "special": true
         | 
| 939 | 
            +
                },
         | 
| 940 | 
            +
                "117": {
         | 
| 941 | 
            +
                  "content": "[unused55]",
         | 
| 942 | 
            +
                  "lstrip": false,
         | 
| 943 | 
            +
                  "normalized": false,
         | 
| 944 | 
            +
                  "rstrip": false,
         | 
| 945 | 
            +
                  "single_word": false,
         | 
| 946 | 
            +
                  "special": true
         | 
| 947 | 
            +
                },
         | 
| 948 | 
            +
                "118": {
         | 
| 949 | 
            +
                  "content": "[unused56]",
         | 
| 950 | 
            +
                  "lstrip": false,
         | 
| 951 | 
            +
                  "normalized": false,
         | 
| 952 | 
            +
                  "rstrip": false,
         | 
| 953 | 
            +
                  "single_word": false,
         | 
| 954 | 
            +
                  "special": true
         | 
| 955 | 
            +
                },
         | 
| 956 | 
            +
                "119": {
         | 
| 957 | 
            +
                  "content": "[unused57]",
         | 
| 958 | 
            +
                  "lstrip": false,
         | 
| 959 | 
            +
                  "normalized": false,
         | 
| 960 | 
            +
                  "rstrip": false,
         | 
| 961 | 
            +
                  "single_word": false,
         | 
| 962 | 
            +
                  "special": true
         | 
| 963 | 
            +
                },
         | 
| 964 | 
            +
                "120": {
         | 
| 965 | 
            +
                  "content": "[unused58]",
         | 
| 966 | 
            +
                  "lstrip": false,
         | 
| 967 | 
            +
                  "normalized": false,
         | 
| 968 | 
            +
                  "rstrip": false,
         | 
| 969 | 
            +
                  "single_word": false,
         | 
| 970 | 
            +
                  "special": true
         | 
| 971 | 
            +
                },
         | 
| 972 | 
            +
                "121": {
         | 
| 973 | 
            +
                  "content": "[unused59]",
         | 
| 974 | 
            +
                  "lstrip": false,
         | 
| 975 | 
            +
                  "normalized": false,
         | 
| 976 | 
            +
                  "rstrip": false,
         | 
| 977 | 
            +
                  "single_word": false,
         | 
| 978 | 
            +
                  "special": true
         | 
| 979 | 
            +
                },
         | 
| 980 | 
            +
                "122": {
         | 
| 981 | 
            +
                  "content": "[unused60]",
         | 
| 982 | 
            +
                  "lstrip": false,
         | 
| 983 | 
            +
                  "normalized": false,
         | 
| 984 | 
            +
                  "rstrip": false,
         | 
| 985 | 
            +
                  "single_word": false,
         | 
| 986 | 
            +
                  "special": true
         | 
| 987 | 
            +
                },
         | 
| 988 | 
            +
                "123": {
         | 
| 989 | 
            +
                  "content": "[unused61]",
         | 
| 990 | 
            +
                  "lstrip": false,
         | 
| 991 | 
            +
                  "normalized": false,
         | 
| 992 | 
            +
                  "rstrip": false,
         | 
| 993 | 
            +
                  "single_word": false,
         | 
| 994 | 
            +
                  "special": true
         | 
| 995 | 
            +
                },
         | 
| 996 | 
            +
                "124": {
         | 
| 997 | 
            +
                  "content": "[unused62]",
         | 
| 998 | 
            +
                  "lstrip": false,
         | 
| 999 | 
            +
                  "normalized": false,
         | 
| 1000 | 
            +
                  "rstrip": false,
         | 
| 1001 | 
            +
                  "single_word": false,
         | 
| 1002 | 
            +
                  "special": true
         | 
| 1003 | 
            +
                },
         | 
| 1004 | 
            +
                "125": {
         | 
| 1005 | 
            +
                  "content": "[unused63]",
         | 
| 1006 | 
            +
                  "lstrip": false,
         | 
| 1007 | 
            +
                  "normalized": false,
         | 
| 1008 | 
            +
                  "rstrip": false,
         | 
| 1009 | 
            +
                  "single_word": false,
         | 
| 1010 | 
            +
                  "special": true
         | 
| 1011 | 
            +
                },
         | 
| 1012 | 
            +
                "126": {
         | 
| 1013 | 
            +
                  "content": "[unused64]",
         | 
| 1014 | 
            +
                  "lstrip": false,
         | 
| 1015 | 
            +
                  "normalized": false,
         | 
| 1016 | 
            +
                  "rstrip": false,
         | 
| 1017 | 
            +
                  "single_word": false,
         | 
| 1018 | 
            +
                  "special": true
         | 
| 1019 | 
            +
                },
         | 
| 1020 | 
            +
                "127": {
         | 
| 1021 | 
            +
                  "content": "[unused65]",
         | 
| 1022 | 
            +
                  "lstrip": false,
         | 
| 1023 | 
            +
                  "normalized": false,
         | 
| 1024 | 
            +
                  "rstrip": false,
         | 
| 1025 | 
            +
                  "single_word": false,
         | 
| 1026 | 
            +
                  "special": true
         | 
| 1027 | 
            +
                },
         | 
| 1028 | 
            +
                "128": {
         | 
| 1029 | 
            +
                  "content": "[unused66]",
         | 
| 1030 | 
            +
                  "lstrip": false,
         | 
| 1031 | 
            +
                  "normalized": false,
         | 
| 1032 | 
            +
                  "rstrip": false,
         | 
| 1033 | 
            +
                  "single_word": false,
         | 
| 1034 | 
            +
                  "special": true
         | 
| 1035 | 
            +
                },
         | 
| 1036 | 
            +
                "129": {
         | 
| 1037 | 
            +
                  "content": "[unused67]",
         | 
| 1038 | 
            +
                  "lstrip": false,
         | 
| 1039 | 
            +
                  "normalized": false,
         | 
| 1040 | 
            +
                  "rstrip": false,
         | 
| 1041 | 
            +
                  "single_word": false,
         | 
| 1042 | 
            +
                  "special": true
         | 
| 1043 | 
            +
                },
         | 
| 1044 | 
            +
                "130": {
         | 
| 1045 | 
            +
                  "content": "[unused68]",
         | 
| 1046 | 
            +
                  "lstrip": false,
         | 
| 1047 | 
            +
                  "normalized": false,
         | 
| 1048 | 
            +
                  "rstrip": false,
         | 
| 1049 | 
            +
                  "single_word": false,
         | 
| 1050 | 
            +
                  "special": true
         | 
| 1051 | 
            +
                },
         | 
| 1052 | 
            +
                "131": {
         | 
| 1053 | 
            +
                  "content": "[unused69]",
         | 
| 1054 | 
            +
                  "lstrip": false,
         | 
| 1055 | 
            +
                  "normalized": false,
         | 
| 1056 | 
            +
                  "rstrip": false,
         | 
| 1057 | 
            +
                  "single_word": false,
         | 
| 1058 | 
            +
                  "special": true
         | 
| 1059 | 
            +
                },
         | 
| 1060 | 
            +
                "132": {
         | 
| 1061 | 
            +
                  "content": "[unused70]",
         | 
| 1062 | 
            +
                  "lstrip": false,
         | 
| 1063 | 
            +
                  "normalized": false,
         | 
| 1064 | 
            +
                  "rstrip": false,
         | 
| 1065 | 
            +
                  "single_word": false,
         | 
| 1066 | 
            +
                  "special": true
         | 
| 1067 | 
            +
                },
         | 
| 1068 | 
            +
                "133": {
         | 
| 1069 | 
            +
                  "content": "[unused71]",
         | 
| 1070 | 
            +
                  "lstrip": false,
         | 
| 1071 | 
            +
                  "normalized": false,
         | 
| 1072 | 
            +
                  "rstrip": false,
         | 
| 1073 | 
            +
                  "single_word": false,
         | 
| 1074 | 
            +
                  "special": true
         | 
| 1075 | 
            +
                },
         | 
| 1076 | 
            +
                "134": {
         | 
| 1077 | 
            +
                  "content": "[unused72]",
         | 
| 1078 | 
            +
                  "lstrip": false,
         | 
| 1079 | 
            +
                  "normalized": false,
         | 
| 1080 | 
            +
                  "rstrip": false,
         | 
| 1081 | 
            +
                  "single_word": false,
         | 
| 1082 | 
            +
                  "special": true
         | 
| 1083 | 
            +
                },
         | 
| 1084 | 
            +
                "135": {
         | 
| 1085 | 
            +
                  "content": "[unused73]",
         | 
| 1086 | 
            +
                  "lstrip": false,
         | 
| 1087 | 
            +
                  "normalized": false,
         | 
| 1088 | 
            +
                  "rstrip": false,
         | 
| 1089 | 
            +
                  "single_word": false,
         | 
| 1090 | 
            +
                  "special": true
         | 
| 1091 | 
            +
                },
         | 
| 1092 | 
            +
                "136": {
         | 
| 1093 | 
            +
                  "content": "[unused74]",
         | 
| 1094 | 
            +
                  "lstrip": false,
         | 
| 1095 | 
            +
                  "normalized": false,
         | 
| 1096 | 
            +
                  "rstrip": false,
         | 
| 1097 | 
            +
                  "single_word": false,
         | 
| 1098 | 
            +
                  "special": true
         | 
| 1099 | 
            +
                },
         | 
| 1100 | 
            +
                "137": {
         | 
| 1101 | 
            +
                  "content": "[unused75]",
         | 
| 1102 | 
            +
                  "lstrip": false,
         | 
| 1103 | 
            +
                  "normalized": false,
         | 
| 1104 | 
            +
                  "rstrip": false,
         | 
| 1105 | 
            +
                  "single_word": false,
         | 
| 1106 | 
            +
                  "special": true
         | 
| 1107 | 
            +
                },
         | 
| 1108 | 
            +
                "138": {
         | 
| 1109 | 
            +
                  "content": "[unused76]",
         | 
| 1110 | 
            +
                  "lstrip": false,
         | 
| 1111 | 
            +
                  "normalized": false,
         | 
| 1112 | 
            +
                  "rstrip": false,
         | 
| 1113 | 
            +
                  "single_word": false,
         | 
| 1114 | 
            +
                  "special": true
         | 
| 1115 | 
            +
                },
         | 
| 1116 | 
            +
                "139": {
         | 
| 1117 | 
            +
                  "content": "[unused77]",
         | 
| 1118 | 
            +
                  "lstrip": false,
         | 
| 1119 | 
            +
                  "normalized": false,
         | 
| 1120 | 
            +
                  "rstrip": false,
         | 
| 1121 | 
            +
                  "single_word": false,
         | 
| 1122 | 
            +
                  "special": true
         | 
| 1123 | 
            +
                },
         | 
| 1124 | 
            +
                "140": {
         | 
| 1125 | 
            +
                  "content": "[unused78]",
         | 
| 1126 | 
            +
                  "lstrip": false,
         | 
| 1127 | 
            +
                  "normalized": false,
         | 
| 1128 | 
            +
                  "rstrip": false,
         | 
| 1129 | 
            +
                  "single_word": false,
         | 
| 1130 | 
            +
                  "special": true
         | 
| 1131 | 
            +
                },
         | 
| 1132 | 
            +
                "141": {
         | 
| 1133 | 
            +
                  "content": "[unused79]",
         | 
| 1134 | 
            +
                  "lstrip": false,
         | 
| 1135 | 
            +
                  "normalized": false,
         | 
| 1136 | 
            +
                  "rstrip": false,
         | 
| 1137 | 
            +
                  "single_word": false,
         | 
| 1138 | 
            +
                  "special": true
         | 
| 1139 | 
            +
                },
         | 
| 1140 | 
            +
                "142": {
         | 
| 1141 | 
            +
                  "content": "[unused80]",
         | 
| 1142 | 
            +
                  "lstrip": false,
         | 
| 1143 | 
            +
                  "normalized": false,
         | 
| 1144 | 
            +
                  "rstrip": false,
         | 
| 1145 | 
            +
                  "single_word": false,
         | 
| 1146 | 
            +
                  "special": true
         | 
| 1147 | 
            +
                },
         | 
| 1148 | 
            +
                "143": {
         | 
| 1149 | 
            +
                  "content": "[unused81]",
         | 
| 1150 | 
            +
                  "lstrip": false,
         | 
| 1151 | 
            +
                  "normalized": false,
         | 
| 1152 | 
            +
                  "rstrip": false,
         | 
| 1153 | 
            +
                  "single_word": false,
         | 
| 1154 | 
            +
                  "special": true
         | 
| 1155 | 
            +
                },
         | 
| 1156 | 
            +
                "144": {
         | 
| 1157 | 
            +
                  "content": "[unused82]",
         | 
| 1158 | 
            +
                  "lstrip": false,
         | 
| 1159 | 
            +
                  "normalized": false,
         | 
| 1160 | 
            +
                  "rstrip": false,
         | 
| 1161 | 
            +
                  "single_word": false,
         | 
| 1162 | 
            +
                  "special": true
         | 
| 1163 | 
            +
                },
         | 
| 1164 | 
            +
                "145": {
         | 
| 1165 | 
            +
                  "content": "[unused83]",
         | 
| 1166 | 
            +
                  "lstrip": false,
         | 
| 1167 | 
            +
                  "normalized": false,
         | 
| 1168 | 
            +
                  "rstrip": false,
         | 
| 1169 | 
            +
                  "single_word": false,
         | 
| 1170 | 
            +
                  "special": true
         | 
| 1171 | 
            +
                },
         | 
| 1172 | 
            +
                "146": {
         | 
| 1173 | 
            +
                  "content": "[unused84]",
         | 
| 1174 | 
            +
                  "lstrip": false,
         | 
| 1175 | 
            +
                  "normalized": false,
         | 
| 1176 | 
            +
                  "rstrip": false,
         | 
| 1177 | 
            +
                  "single_word": false,
         | 
| 1178 | 
            +
                  "special": true
         | 
| 1179 | 
            +
                },
         | 
| 1180 | 
            +
                "147": {
         | 
| 1181 | 
            +
                  "content": "[unused85]",
         | 
| 1182 | 
            +
                  "lstrip": false,
         | 
| 1183 | 
            +
                  "normalized": false,
         | 
| 1184 | 
            +
                  "rstrip": false,
         | 
| 1185 | 
            +
                  "single_word": false,
         | 
| 1186 | 
            +
                  "special": true
         | 
| 1187 | 
            +
                },
         | 
| 1188 | 
            +
                "148": {
         | 
| 1189 | 
            +
                  "content": "[unused86]",
         | 
| 1190 | 
            +
                  "lstrip": false,
         | 
| 1191 | 
            +
                  "normalized": false,
         | 
| 1192 | 
            +
                  "rstrip": false,
         | 
| 1193 | 
            +
                  "single_word": false,
         | 
| 1194 | 
            +
                  "special": true
         | 
| 1195 | 
            +
                },
         | 
| 1196 | 
            +
                "149": {
         | 
| 1197 | 
            +
                  "content": "[unused87]",
         | 
| 1198 | 
            +
                  "lstrip": false,
         | 
| 1199 | 
            +
                  "normalized": false,
         | 
| 1200 | 
            +
                  "rstrip": false,
         | 
| 1201 | 
            +
                  "single_word": false,
         | 
| 1202 | 
            +
                  "special": true
         | 
| 1203 | 
            +
                },
         | 
| 1204 | 
            +
                "150": {
         | 
| 1205 | 
            +
                  "content": "[unused88]",
         | 
| 1206 | 
            +
                  "lstrip": false,
         | 
| 1207 | 
            +
                  "normalized": false,
         | 
| 1208 | 
            +
                  "rstrip": false,
         | 
| 1209 | 
            +
                  "single_word": false,
         | 
| 1210 | 
            +
                  "special": true
         | 
| 1211 | 
            +
                },
         | 
| 1212 | 
            +
                "151": {
         | 
| 1213 | 
            +
                  "content": "[unused89]",
         | 
| 1214 | 
            +
                  "lstrip": false,
         | 
| 1215 | 
            +
                  "normalized": false,
         | 
| 1216 | 
            +
                  "rstrip": false,
         | 
| 1217 | 
            +
                  "single_word": false,
         | 
| 1218 | 
            +
                  "special": true
         | 
| 1219 | 
            +
                },
         | 
| 1220 | 
            +
                "152": {
         | 
| 1221 | 
            +
                  "content": "[unused90]",
         | 
| 1222 | 
            +
                  "lstrip": false,
         | 
| 1223 | 
            +
                  "normalized": false,
         | 
| 1224 | 
            +
                  "rstrip": false,
         | 
| 1225 | 
            +
                  "single_word": false,
         | 
| 1226 | 
            +
                  "special": true
         | 
| 1227 | 
            +
                },
         | 
| 1228 | 
            +
                "153": {
         | 
| 1229 | 
            +
                  "content": "[unused91]",
         | 
| 1230 | 
            +
                  "lstrip": false,
         | 
| 1231 | 
            +
                  "normalized": false,
         | 
| 1232 | 
            +
                  "rstrip": false,
         | 
| 1233 | 
            +
                  "single_word": false,
         | 
| 1234 | 
            +
                  "special": true
         | 
| 1235 | 
            +
                },
         | 
| 1236 | 
            +
                "154": {
         | 
| 1237 | 
            +
                  "content": "[unused92]",
         | 
| 1238 | 
            +
                  "lstrip": false,
         | 
| 1239 | 
            +
                  "normalized": false,
         | 
| 1240 | 
            +
                  "rstrip": false,
         | 
| 1241 | 
            +
                  "single_word": false,
         | 
| 1242 | 
            +
                  "special": true
         | 
| 1243 | 
            +
                },
         | 
| 1244 | 
            +
                "155": {
         | 
| 1245 | 
            +
                  "content": "[unused93]",
         | 
| 1246 | 
            +
                  "lstrip": false,
         | 
| 1247 | 
            +
                  "normalized": false,
         | 
| 1248 | 
            +
                  "rstrip": false,
         | 
| 1249 | 
            +
                  "single_word": false,
         | 
| 1250 | 
            +
                  "special": true
         | 
| 1251 | 
            +
                },
         | 
| 1252 | 
            +
                "156": {
         | 
| 1253 | 
            +
                  "content": "[unused94]",
         | 
| 1254 | 
            +
                  "lstrip": false,
         | 
| 1255 | 
            +
                  "normalized": false,
         | 
| 1256 | 
            +
                  "rstrip": false,
         | 
| 1257 | 
            +
                  "single_word": false,
         | 
| 1258 | 
            +
                  "special": true
         | 
| 1259 | 
            +
                },
         | 
| 1260 | 
            +
                "157": {
         | 
| 1261 | 
            +
                  "content": "[unused95]",
         | 
| 1262 | 
            +
                  "lstrip": false,
         | 
| 1263 | 
            +
                  "normalized": false,
         | 
| 1264 | 
            +
                  "rstrip": false,
         | 
| 1265 | 
            +
                  "single_word": false,
         | 
| 1266 | 
            +
                  "special": true
         | 
| 1267 | 
            +
                },
         | 
| 1268 | 
            +
                "158": {
         | 
| 1269 | 
            +
                  "content": "[unused96]",
         | 
| 1270 | 
            +
                  "lstrip": false,
         | 
| 1271 | 
            +
                  "normalized": false,
         | 
| 1272 | 
            +
                  "rstrip": false,
         | 
| 1273 | 
            +
                  "single_word": false,
         | 
| 1274 | 
            +
                  "special": true
         | 
| 1275 | 
            +
                },
         | 
| 1276 | 
            +
                "159": {
         | 
| 1277 | 
            +
                  "content": "[unused97]",
         | 
| 1278 | 
            +
                  "lstrip": false,
         | 
| 1279 | 
            +
                  "normalized": false,
         | 
| 1280 | 
            +
                  "rstrip": false,
         | 
| 1281 | 
            +
                  "single_word": false,
         | 
| 1282 | 
            +
                  "special": true
         | 
| 1283 | 
            +
                },
         | 
| 1284 | 
            +
                "160": {
         | 
| 1285 | 
            +
                  "content": "[unused98]",
         | 
| 1286 | 
            +
                  "lstrip": false,
         | 
| 1287 | 
            +
                  "normalized": false,
         | 
| 1288 | 
            +
                  "rstrip": false,
         | 
| 1289 | 
            +
                  "single_word": false,
         | 
| 1290 | 
            +
                  "special": true
         | 
| 1291 | 
            +
                },
         | 
| 1292 | 
            +
                "161": {
         | 
| 1293 | 
            +
                  "content": "[unused99]",
         | 
| 1294 | 
            +
                  "lstrip": false,
         | 
| 1295 | 
            +
                  "normalized": false,
         | 
| 1296 | 
            +
                  "rstrip": false,
         | 
| 1297 | 
            +
                  "single_word": false,
         | 
| 1298 | 
            +
                  "special": true
         | 
| 1299 | 
            +
                },
         | 
| 1300 | 
            +
                "162": {
         | 
| 1301 | 
            +
                  "content": "[extra_id_0]",
         | 
| 1302 | 
            +
                  "lstrip": false,
         | 
| 1303 | 
            +
                  "normalized": false,
         | 
| 1304 | 
            +
                  "rstrip": false,
         | 
| 1305 | 
            +
                  "single_word": false,
         | 
| 1306 | 
            +
                  "special": true
         | 
| 1307 | 
            +
                },
         | 
| 1308 | 
            +
                "163": {
         | 
| 1309 | 
            +
                  "content": "[extra_id_1]",
         | 
| 1310 | 
            +
                  "lstrip": false,
         | 
| 1311 | 
            +
                  "normalized": false,
         | 
| 1312 | 
            +
                  "rstrip": false,
         | 
| 1313 | 
            +
                  "single_word": false,
         | 
| 1314 | 
            +
                  "special": true
         | 
| 1315 | 
            +
                },
         | 
| 1316 | 
            +
                "164": {
         | 
| 1317 | 
            +
                  "content": "[extra_id_2]",
         | 
| 1318 | 
            +
                  "lstrip": false,
         | 
| 1319 | 
            +
                  "normalized": false,
         | 
| 1320 | 
            +
                  "rstrip": false,
         | 
| 1321 | 
            +
                  "single_word": false,
         | 
| 1322 | 
            +
                  "special": true
         | 
| 1323 | 
            +
                },
         | 
| 1324 | 
            +
                "165": {
         | 
| 1325 | 
            +
                  "content": "[extra_id_3]",
         | 
| 1326 | 
            +
                  "lstrip": false,
         | 
| 1327 | 
            +
                  "normalized": false,
         | 
| 1328 | 
            +
                  "rstrip": false,
         | 
| 1329 | 
            +
                  "single_word": false,
         | 
| 1330 | 
            +
                  "special": true
         | 
| 1331 | 
            +
                },
         | 
| 1332 | 
            +
                "166": {
         | 
| 1333 | 
            +
                  "content": "[extra_id_4]",
         | 
| 1334 | 
            +
                  "lstrip": false,
         | 
| 1335 | 
            +
                  "normalized": false,
         | 
| 1336 | 
            +
                  "rstrip": false,
         | 
| 1337 | 
            +
                  "single_word": false,
         | 
| 1338 | 
            +
                  "special": true
         | 
| 1339 | 
            +
                },
         | 
| 1340 | 
            +
                "167": {
         | 
| 1341 | 
            +
                  "content": "[extra_id_5]",
         | 
| 1342 | 
            +
                  "lstrip": false,
         | 
| 1343 | 
            +
                  "normalized": false,
         | 
| 1344 | 
            +
                  "rstrip": false,
         | 
| 1345 | 
            +
                  "single_word": false,
         | 
| 1346 | 
            +
                  "special": true
         | 
| 1347 | 
            +
                },
         | 
| 1348 | 
            +
                "168": {
         | 
| 1349 | 
            +
                  "content": "[extra_id_6]",
         | 
| 1350 | 
            +
                  "lstrip": false,
         | 
| 1351 | 
            +
                  "normalized": false,
         | 
| 1352 | 
            +
                  "rstrip": false,
         | 
| 1353 | 
            +
                  "single_word": false,
         | 
| 1354 | 
            +
                  "special": true
         | 
| 1355 | 
            +
                },
         | 
| 1356 | 
            +
                "169": {
         | 
| 1357 | 
            +
                  "content": "[extra_id_7]",
         | 
| 1358 | 
            +
                  "lstrip": false,
         | 
| 1359 | 
            +
                  "normalized": false,
         | 
| 1360 | 
            +
                  "rstrip": false,
         | 
| 1361 | 
            +
                  "single_word": false,
         | 
| 1362 | 
            +
                  "special": true
         | 
| 1363 | 
            +
                },
         | 
| 1364 | 
            +
                "170": {
         | 
| 1365 | 
            +
                  "content": "[extra_id_8]",
         | 
| 1366 | 
            +
                  "lstrip": false,
         | 
| 1367 | 
            +
                  "normalized": false,
         | 
| 1368 | 
            +
                  "rstrip": false,
         | 
| 1369 | 
            +
                  "single_word": false,
         | 
| 1370 | 
            +
                  "special": true
         | 
| 1371 | 
            +
                },
         | 
| 1372 | 
            +
                "171": {
         | 
| 1373 | 
            +
                  "content": "[extra_id_9]",
         | 
| 1374 | 
            +
                  "lstrip": false,
         | 
| 1375 | 
            +
                  "normalized": false,
         | 
| 1376 | 
            +
                  "rstrip": false,
         | 
| 1377 | 
            +
                  "single_word": false,
         | 
| 1378 | 
            +
                  "special": true
         | 
| 1379 | 
            +
                },
         | 
| 1380 | 
            +
                "172": {
         | 
| 1381 | 
            +
                  "content": "[extra_id_10]",
         | 
| 1382 | 
            +
                  "lstrip": false,
         | 
| 1383 | 
            +
                  "normalized": false,
         | 
| 1384 | 
            +
                  "rstrip": false,
         | 
| 1385 | 
            +
                  "single_word": false,
         | 
| 1386 | 
            +
                  "special": true
         | 
| 1387 | 
            +
                },
         | 
| 1388 | 
            +
                "173": {
         | 
| 1389 | 
            +
                  "content": "[extra_id_11]",
         | 
| 1390 | 
            +
                  "lstrip": false,
         | 
| 1391 | 
            +
                  "normalized": false,
         | 
| 1392 | 
            +
                  "rstrip": false,
         | 
| 1393 | 
            +
                  "single_word": false,
         | 
| 1394 | 
            +
                  "special": true
         | 
| 1395 | 
            +
                },
         | 
| 1396 | 
            +
                "174": {
         | 
| 1397 | 
            +
                  "content": "[extra_id_12]",
         | 
| 1398 | 
            +
                  "lstrip": false,
         | 
| 1399 | 
            +
                  "normalized": false,
         | 
| 1400 | 
            +
                  "rstrip": false,
         | 
| 1401 | 
            +
                  "single_word": false,
         | 
| 1402 | 
            +
                  "special": true
         | 
| 1403 | 
            +
                },
         | 
| 1404 | 
            +
                "175": {
         | 
| 1405 | 
            +
                  "content": "[extra_id_13]",
         | 
| 1406 | 
            +
                  "lstrip": false,
         | 
| 1407 | 
            +
                  "normalized": false,
         | 
| 1408 | 
            +
                  "rstrip": false,
         | 
| 1409 | 
            +
                  "single_word": false,
         | 
| 1410 | 
            +
                  "special": true
         | 
| 1411 | 
            +
                },
         | 
| 1412 | 
            +
                "176": {
         | 
| 1413 | 
            +
                  "content": "[extra_id_14]",
         | 
| 1414 | 
            +
                  "lstrip": false,
         | 
| 1415 | 
            +
                  "normalized": false,
         | 
| 1416 | 
            +
                  "rstrip": false,
         | 
| 1417 | 
            +
                  "single_word": false,
         | 
| 1418 | 
            +
                  "special": true
         | 
| 1419 | 
            +
                },
         | 
| 1420 | 
            +
                "177": {
         | 
| 1421 | 
            +
                  "content": "[extra_id_15]",
         | 
| 1422 | 
            +
                  "lstrip": false,
         | 
| 1423 | 
            +
                  "normalized": false,
         | 
| 1424 | 
            +
                  "rstrip": false,
         | 
| 1425 | 
            +
                  "single_word": false,
         | 
| 1426 | 
            +
                  "special": true
         | 
| 1427 | 
            +
                },
         | 
| 1428 | 
            +
                "178": {
         | 
| 1429 | 
            +
                  "content": "[extra_id_16]",
         | 
| 1430 | 
            +
                  "lstrip": false,
         | 
| 1431 | 
            +
                  "normalized": false,
         | 
| 1432 | 
            +
                  "rstrip": false,
         | 
| 1433 | 
            +
                  "single_word": false,
         | 
| 1434 | 
            +
                  "special": true
         | 
| 1435 | 
            +
                },
         | 
| 1436 | 
            +
                "179": {
         | 
| 1437 | 
            +
                  "content": "[extra_id_17]",
         | 
| 1438 | 
            +
                  "lstrip": false,
         | 
| 1439 | 
            +
                  "normalized": false,
         | 
| 1440 | 
            +
                  "rstrip": false,
         | 
| 1441 | 
            +
                  "single_word": false,
         | 
| 1442 | 
            +
                  "special": true
         | 
| 1443 | 
            +
                },
         | 
| 1444 | 
            +
                "180": {
         | 
| 1445 | 
            +
                  "content": "[extra_id_18]",
         | 
| 1446 | 
            +
                  "lstrip": false,
         | 
| 1447 | 
            +
                  "normalized": false,
         | 
| 1448 | 
            +
                  "rstrip": false,
         | 
| 1449 | 
            +
                  "single_word": false,
         | 
| 1450 | 
            +
                  "special": true
         | 
| 1451 | 
            +
                },
         | 
| 1452 | 
            +
                "181": {
         | 
| 1453 | 
            +
                  "content": "[extra_id_19]",
         | 
| 1454 | 
            +
                  "lstrip": false,
         | 
| 1455 | 
            +
                  "normalized": false,
         | 
| 1456 | 
            +
                  "rstrip": false,
         | 
| 1457 | 
            +
                  "single_word": false,
         | 
| 1458 | 
            +
                  "special": true
         | 
| 1459 | 
            +
                },
         | 
| 1460 | 
            +
                "182": {
         | 
| 1461 | 
            +
                  "content": "[extra_id_20]",
         | 
| 1462 | 
            +
                  "lstrip": false,
         | 
| 1463 | 
            +
                  "normalized": false,
         | 
| 1464 | 
            +
                  "rstrip": false,
         | 
| 1465 | 
            +
                  "single_word": false,
         | 
| 1466 | 
            +
                  "special": true
         | 
| 1467 | 
            +
                },
         | 
| 1468 | 
            +
                "183": {
         | 
| 1469 | 
            +
                  "content": "[extra_id_21]",
         | 
| 1470 | 
            +
                  "lstrip": false,
         | 
| 1471 | 
            +
                  "normalized": false,
         | 
| 1472 | 
            +
                  "rstrip": false,
         | 
| 1473 | 
            +
                  "single_word": false,
         | 
| 1474 | 
            +
                  "special": true
         | 
| 1475 | 
            +
                },
         | 
| 1476 | 
            +
                "184": {
         | 
| 1477 | 
            +
                  "content": "[extra_id_22]",
         | 
| 1478 | 
            +
                  "lstrip": false,
         | 
| 1479 | 
            +
                  "normalized": false,
         | 
| 1480 | 
            +
                  "rstrip": false,
         | 
| 1481 | 
            +
                  "single_word": false,
         | 
| 1482 | 
            +
                  "special": true
         | 
| 1483 | 
            +
                },
         | 
| 1484 | 
            +
                "185": {
         | 
| 1485 | 
            +
                  "content": "[extra_id_23]",
         | 
| 1486 | 
            +
                  "lstrip": false,
         | 
| 1487 | 
            +
                  "normalized": false,
         | 
| 1488 | 
            +
                  "rstrip": false,
         | 
| 1489 | 
            +
                  "single_word": false,
         | 
| 1490 | 
            +
                  "special": true
         | 
| 1491 | 
            +
                },
         | 
| 1492 | 
            +
                "186": {
         | 
| 1493 | 
            +
                  "content": "[extra_id_24]",
         | 
| 1494 | 
            +
                  "lstrip": false,
         | 
| 1495 | 
            +
                  "normalized": false,
         | 
| 1496 | 
            +
                  "rstrip": false,
         | 
| 1497 | 
            +
                  "single_word": false,
         | 
| 1498 | 
            +
                  "special": true
         | 
| 1499 | 
            +
                },
         | 
| 1500 | 
            +
                "187": {
         | 
| 1501 | 
            +
                  "content": "[extra_id_25]",
         | 
| 1502 | 
            +
                  "lstrip": false,
         | 
| 1503 | 
            +
                  "normalized": false,
         | 
| 1504 | 
            +
                  "rstrip": false,
         | 
| 1505 | 
            +
                  "single_word": false,
         | 
| 1506 | 
            +
                  "special": true
         | 
| 1507 | 
            +
                },
         | 
| 1508 | 
            +
                "188": {
         | 
| 1509 | 
            +
                  "content": "[extra_id_26]",
         | 
| 1510 | 
            +
                  "lstrip": false,
         | 
| 1511 | 
            +
                  "normalized": false,
         | 
| 1512 | 
            +
                  "rstrip": false,
         | 
| 1513 | 
            +
                  "single_word": false,
         | 
| 1514 | 
            +
                  "special": true
         | 
| 1515 | 
            +
                },
         | 
| 1516 | 
            +
                "189": {
         | 
| 1517 | 
            +
                  "content": "[extra_id_27]",
         | 
| 1518 | 
            +
                  "lstrip": false,
         | 
| 1519 | 
            +
                  "normalized": false,
         | 
| 1520 | 
            +
                  "rstrip": false,
         | 
| 1521 | 
            +
                  "single_word": false,
         | 
| 1522 | 
            +
                  "special": true
         | 
| 1523 | 
            +
                },
         | 
| 1524 | 
            +
                "190": {
         | 
| 1525 | 
            +
                  "content": "[extra_id_28]",
         | 
| 1526 | 
            +
                  "lstrip": false,
         | 
| 1527 | 
            +
                  "normalized": false,
         | 
| 1528 | 
            +
                  "rstrip": false,
         | 
| 1529 | 
            +
                  "single_word": false,
         | 
| 1530 | 
            +
                  "special": true
         | 
| 1531 | 
            +
                },
         | 
| 1532 | 
            +
                "191": {
         | 
| 1533 | 
            +
                  "content": "[extra_id_29]",
         | 
| 1534 | 
            +
                  "lstrip": false,
         | 
| 1535 | 
            +
                  "normalized": false,
         | 
| 1536 | 
            +
                  "rstrip": false,
         | 
| 1537 | 
            +
                  "single_word": false,
         | 
| 1538 | 
            +
                  "special": true
         | 
| 1539 | 
            +
                },
         | 
| 1540 | 
            +
                "192": {
         | 
| 1541 | 
            +
                  "content": "[extra_id_30]",
         | 
| 1542 | 
            +
                  "lstrip": false,
         | 
| 1543 | 
            +
                  "normalized": false,
         | 
| 1544 | 
            +
                  "rstrip": false,
         | 
| 1545 | 
            +
                  "single_word": false,
         | 
| 1546 | 
            +
                  "special": true
         | 
| 1547 | 
            +
                },
         | 
| 1548 | 
            +
                "193": {
         | 
| 1549 | 
            +
                  "content": "[extra_id_31]",
         | 
| 1550 | 
            +
                  "lstrip": false,
         | 
| 1551 | 
            +
                  "normalized": false,
         | 
| 1552 | 
            +
                  "rstrip": false,
         | 
| 1553 | 
            +
                  "single_word": false,
         | 
| 1554 | 
            +
                  "special": true
         | 
| 1555 | 
            +
                },
         | 
| 1556 | 
            +
                "194": {
         | 
| 1557 | 
            +
                  "content": "[extra_id_32]",
         | 
| 1558 | 
            +
                  "lstrip": false,
         | 
| 1559 | 
            +
                  "normalized": false,
         | 
| 1560 | 
            +
                  "rstrip": false,
         | 
| 1561 | 
            +
                  "single_word": false,
         | 
| 1562 | 
            +
                  "special": true
         | 
| 1563 | 
            +
                },
         | 
| 1564 | 
            +
                "195": {
         | 
| 1565 | 
            +
                  "content": "[extra_id_33]",
         | 
| 1566 | 
            +
                  "lstrip": false,
         | 
| 1567 | 
            +
                  "normalized": false,
         | 
| 1568 | 
            +
                  "rstrip": false,
         | 
| 1569 | 
            +
                  "single_word": false,
         | 
| 1570 | 
            +
                  "special": true
         | 
| 1571 | 
            +
                },
         | 
| 1572 | 
            +
                "196": {
         | 
| 1573 | 
            +
                  "content": "[extra_id_34]",
         | 
| 1574 | 
            +
                  "lstrip": false,
         | 
| 1575 | 
            +
                  "normalized": false,
         | 
| 1576 | 
            +
                  "rstrip": false,
         | 
| 1577 | 
            +
                  "single_word": false,
         | 
| 1578 | 
            +
                  "special": true
         | 
| 1579 | 
            +
                },
         | 
| 1580 | 
            +
                "197": {
         | 
| 1581 | 
            +
                  "content": "[extra_id_35]",
         | 
| 1582 | 
            +
                  "lstrip": false,
         | 
| 1583 | 
            +
                  "normalized": false,
         | 
| 1584 | 
            +
                  "rstrip": false,
         | 
| 1585 | 
            +
                  "single_word": false,
         | 
| 1586 | 
            +
                  "special": true
         | 
| 1587 | 
            +
                },
         | 
| 1588 | 
            +
                "198": {
         | 
| 1589 | 
            +
                  "content": "[extra_id_36]",
         | 
| 1590 | 
            +
                  "lstrip": false,
         | 
| 1591 | 
            +
                  "normalized": false,
         | 
| 1592 | 
            +
                  "rstrip": false,
         | 
| 1593 | 
            +
                  "single_word": false,
         | 
| 1594 | 
            +
                  "special": true
         | 
| 1595 | 
            +
                },
         | 
| 1596 | 
            +
                "199": {
         | 
| 1597 | 
            +
                  "content": "[extra_id_37]",
         | 
| 1598 | 
            +
                  "lstrip": false,
         | 
| 1599 | 
            +
                  "normalized": false,
         | 
| 1600 | 
            +
                  "rstrip": false,
         | 
| 1601 | 
            +
                  "single_word": false,
         | 
| 1602 | 
            +
                  "special": true
         | 
| 1603 | 
            +
                },
         | 
| 1604 | 
            +
                "200": {
         | 
| 1605 | 
            +
                  "content": "[extra_id_38]",
         | 
| 1606 | 
            +
                  "lstrip": false,
         | 
| 1607 | 
            +
                  "normalized": false,
         | 
| 1608 | 
            +
                  "rstrip": false,
         | 
| 1609 | 
            +
                  "single_word": false,
         | 
| 1610 | 
            +
                  "special": true
         | 
| 1611 | 
            +
                },
         | 
| 1612 | 
            +
                "201": {
         | 
| 1613 | 
            +
                  "content": "[extra_id_39]",
         | 
| 1614 | 
            +
                  "lstrip": false,
         | 
| 1615 | 
            +
                  "normalized": false,
         | 
| 1616 | 
            +
                  "rstrip": false,
         | 
| 1617 | 
            +
                  "single_word": false,
         | 
| 1618 | 
            +
                  "special": true
         | 
| 1619 | 
            +
                },
         | 
| 1620 | 
            +
                "202": {
         | 
| 1621 | 
            +
                  "content": "[extra_id_40]",
         | 
| 1622 | 
            +
                  "lstrip": false,
         | 
| 1623 | 
            +
                  "normalized": false,
         | 
| 1624 | 
            +
                  "rstrip": false,
         | 
| 1625 | 
            +
                  "single_word": false,
         | 
| 1626 | 
            +
                  "special": true
         | 
| 1627 | 
            +
                },
         | 
| 1628 | 
            +
                "203": {
         | 
| 1629 | 
            +
                  "content": "[extra_id_41]",
         | 
| 1630 | 
            +
                  "lstrip": false,
         | 
| 1631 | 
            +
                  "normalized": false,
         | 
| 1632 | 
            +
                  "rstrip": false,
         | 
| 1633 | 
            +
                  "single_word": false,
         | 
| 1634 | 
            +
                  "special": true
         | 
| 1635 | 
            +
                },
         | 
| 1636 | 
            +
                "204": {
         | 
| 1637 | 
            +
                  "content": "[extra_id_42]",
         | 
| 1638 | 
            +
                  "lstrip": false,
         | 
| 1639 | 
            +
                  "normalized": false,
         | 
| 1640 | 
            +
                  "rstrip": false,
         | 
| 1641 | 
            +
                  "single_word": false,
         | 
| 1642 | 
            +
                  "special": true
         | 
| 1643 | 
            +
                },
         | 
| 1644 | 
            +
                "205": {
         | 
| 1645 | 
            +
                  "content": "[extra_id_43]",
         | 
| 1646 | 
            +
                  "lstrip": false,
         | 
| 1647 | 
            +
                  "normalized": false,
         | 
| 1648 | 
            +
                  "rstrip": false,
         | 
| 1649 | 
            +
                  "single_word": false,
         | 
| 1650 | 
            +
                  "special": true
         | 
| 1651 | 
            +
                },
         | 
| 1652 | 
            +
                "206": {
         | 
| 1653 | 
            +
                  "content": "[extra_id_44]",
         | 
| 1654 | 
            +
                  "lstrip": false,
         | 
| 1655 | 
            +
                  "normalized": false,
         | 
| 1656 | 
            +
                  "rstrip": false,
         | 
| 1657 | 
            +
                  "single_word": false,
         | 
| 1658 | 
            +
                  "special": true
         | 
| 1659 | 
            +
                },
         | 
| 1660 | 
            +
                "207": {
         | 
| 1661 | 
            +
                  "content": "[extra_id_45]",
         | 
| 1662 | 
            +
                  "lstrip": false,
         | 
| 1663 | 
            +
                  "normalized": false,
         | 
| 1664 | 
            +
                  "rstrip": false,
         | 
| 1665 | 
            +
                  "single_word": false,
         | 
| 1666 | 
            +
                  "special": true
         | 
| 1667 | 
            +
                },
         | 
| 1668 | 
            +
                "208": {
         | 
| 1669 | 
            +
                  "content": "[extra_id_46]",
         | 
| 1670 | 
            +
                  "lstrip": false,
         | 
| 1671 | 
            +
                  "normalized": false,
         | 
| 1672 | 
            +
                  "rstrip": false,
         | 
| 1673 | 
            +
                  "single_word": false,
         | 
| 1674 | 
            +
                  "special": true
         | 
| 1675 | 
            +
                },
         | 
| 1676 | 
            +
                "209": {
         | 
| 1677 | 
            +
                  "content": "[extra_id_47]",
         | 
| 1678 | 
            +
                  "lstrip": false,
         | 
| 1679 | 
            +
                  "normalized": false,
         | 
| 1680 | 
            +
                  "rstrip": false,
         | 
| 1681 | 
            +
                  "single_word": false,
         | 
| 1682 | 
            +
                  "special": true
         | 
| 1683 | 
            +
                },
         | 
| 1684 | 
            +
                "210": {
         | 
| 1685 | 
            +
                  "content": "[extra_id_48]",
         | 
| 1686 | 
            +
                  "lstrip": false,
         | 
| 1687 | 
            +
                  "normalized": false,
         | 
| 1688 | 
            +
                  "rstrip": false,
         | 
| 1689 | 
            +
                  "single_word": false,
         | 
| 1690 | 
            +
                  "special": true
         | 
| 1691 | 
            +
                },
         | 
| 1692 | 
            +
                "211": {
         | 
| 1693 | 
            +
                  "content": "[extra_id_49]",
         | 
| 1694 | 
            +
                  "lstrip": false,
         | 
| 1695 | 
            +
                  "normalized": false,
         | 
| 1696 | 
            +
                  "rstrip": false,
         | 
| 1697 | 
            +
                  "single_word": false,
         | 
| 1698 | 
            +
                  "special": true
         | 
| 1699 | 
            +
                },
         | 
| 1700 | 
            +
                "212": {
         | 
| 1701 | 
            +
                  "content": "[extra_id_50]",
         | 
| 1702 | 
            +
                  "lstrip": false,
         | 
| 1703 | 
            +
                  "normalized": false,
         | 
| 1704 | 
            +
                  "rstrip": false,
         | 
| 1705 | 
            +
                  "single_word": false,
         | 
| 1706 | 
            +
                  "special": true
         | 
| 1707 | 
            +
                },
         | 
| 1708 | 
            +
                "213": {
         | 
| 1709 | 
            +
                  "content": "[extra_id_51]",
         | 
| 1710 | 
            +
                  "lstrip": false,
         | 
| 1711 | 
            +
                  "normalized": false,
         | 
| 1712 | 
            +
                  "rstrip": false,
         | 
| 1713 | 
            +
                  "single_word": false,
         | 
| 1714 | 
            +
                  "special": true
         | 
| 1715 | 
            +
                },
         | 
| 1716 | 
            +
                "214": {
         | 
| 1717 | 
            +
                  "content": "[extra_id_52]",
         | 
| 1718 | 
            +
                  "lstrip": false,
         | 
| 1719 | 
            +
                  "normalized": false,
         | 
| 1720 | 
            +
                  "rstrip": false,
         | 
| 1721 | 
            +
                  "single_word": false,
         | 
| 1722 | 
            +
                  "special": true
         | 
| 1723 | 
            +
                },
         | 
| 1724 | 
            +
                "215": {
         | 
| 1725 | 
            +
                  "content": "[extra_id_53]",
         | 
| 1726 | 
            +
                  "lstrip": false,
         | 
| 1727 | 
            +
                  "normalized": false,
         | 
| 1728 | 
            +
                  "rstrip": false,
         | 
| 1729 | 
            +
                  "single_word": false,
         | 
| 1730 | 
            +
                  "special": true
         | 
| 1731 | 
            +
                },
         | 
| 1732 | 
            +
                "216": {
         | 
| 1733 | 
            +
                  "content": "[extra_id_54]",
         | 
| 1734 | 
            +
                  "lstrip": false,
         | 
| 1735 | 
            +
                  "normalized": false,
         | 
| 1736 | 
            +
                  "rstrip": false,
         | 
| 1737 | 
            +
                  "single_word": false,
         | 
| 1738 | 
            +
                  "special": true
         | 
| 1739 | 
            +
                },
         | 
| 1740 | 
            +
                "217": {
         | 
| 1741 | 
            +
                  "content": "[extra_id_55]",
         | 
| 1742 | 
            +
                  "lstrip": false,
         | 
| 1743 | 
            +
                  "normalized": false,
         | 
| 1744 | 
            +
                  "rstrip": false,
         | 
| 1745 | 
            +
                  "single_word": false,
         | 
| 1746 | 
            +
                  "special": true
         | 
| 1747 | 
            +
                },
         | 
| 1748 | 
            +
                "218": {
         | 
| 1749 | 
            +
                  "content": "[extra_id_56]",
         | 
| 1750 | 
            +
                  "lstrip": false,
         | 
| 1751 | 
            +
                  "normalized": false,
         | 
| 1752 | 
            +
                  "rstrip": false,
         | 
| 1753 | 
            +
                  "single_word": false,
         | 
| 1754 | 
            +
                  "special": true
         | 
| 1755 | 
            +
                },
         | 
| 1756 | 
            +
                "219": {
         | 
| 1757 | 
            +
                  "content": "[extra_id_57]",
         | 
| 1758 | 
            +
                  "lstrip": false,
         | 
| 1759 | 
            +
                  "normalized": false,
         | 
| 1760 | 
            +
                  "rstrip": false,
         | 
| 1761 | 
            +
                  "single_word": false,
         | 
| 1762 | 
            +
                  "special": true
         | 
| 1763 | 
            +
                },
         | 
| 1764 | 
            +
                "220": {
         | 
| 1765 | 
            +
                  "content": "[extra_id_58]",
         | 
| 1766 | 
            +
                  "lstrip": false,
         | 
| 1767 | 
            +
                  "normalized": false,
         | 
| 1768 | 
            +
                  "rstrip": false,
         | 
| 1769 | 
            +
                  "single_word": false,
         | 
| 1770 | 
            +
                  "special": true
         | 
| 1771 | 
            +
                },
         | 
| 1772 | 
            +
                "221": {
         | 
| 1773 | 
            +
                  "content": "[extra_id_59]",
         | 
| 1774 | 
            +
                  "lstrip": false,
         | 
| 1775 | 
            +
                  "normalized": false,
         | 
| 1776 | 
            +
                  "rstrip": false,
         | 
| 1777 | 
            +
                  "single_word": false,
         | 
| 1778 | 
            +
                  "special": true
         | 
| 1779 | 
            +
                },
         | 
| 1780 | 
            +
                "222": {
         | 
| 1781 | 
            +
                  "content": "[extra_id_60]",
         | 
| 1782 | 
            +
                  "lstrip": false,
         | 
| 1783 | 
            +
                  "normalized": false,
         | 
| 1784 | 
            +
                  "rstrip": false,
         | 
| 1785 | 
            +
                  "single_word": false,
         | 
| 1786 | 
            +
                  "special": true
         | 
| 1787 | 
            +
                },
         | 
| 1788 | 
            +
                "223": {
         | 
| 1789 | 
            +
                  "content": "[extra_id_61]",
         | 
| 1790 | 
            +
                  "lstrip": false,
         | 
| 1791 | 
            +
                  "normalized": false,
         | 
| 1792 | 
            +
                  "rstrip": false,
         | 
| 1793 | 
            +
                  "single_word": false,
         | 
| 1794 | 
            +
                  "special": true
         | 
| 1795 | 
            +
                },
         | 
| 1796 | 
            +
                "224": {
         | 
| 1797 | 
            +
                  "content": "[extra_id_62]",
         | 
| 1798 | 
            +
                  "lstrip": false,
         | 
| 1799 | 
            +
                  "normalized": false,
         | 
| 1800 | 
            +
                  "rstrip": false,
         | 
| 1801 | 
            +
                  "single_word": false,
         | 
| 1802 | 
            +
                  "special": true
         | 
| 1803 | 
            +
                },
         | 
| 1804 | 
            +
                "225": {
         | 
| 1805 | 
            +
                  "content": "[extra_id_63]",
         | 
| 1806 | 
            +
                  "lstrip": false,
         | 
| 1807 | 
            +
                  "normalized": false,
         | 
| 1808 | 
            +
                  "rstrip": false,
         | 
| 1809 | 
            +
                  "single_word": false,
         | 
| 1810 | 
            +
                  "special": true
         | 
| 1811 | 
            +
                },
         | 
| 1812 | 
            +
                "226": {
         | 
| 1813 | 
            +
                  "content": "[extra_id_64]",
         | 
| 1814 | 
            +
                  "lstrip": false,
         | 
| 1815 | 
            +
                  "normalized": false,
         | 
| 1816 | 
            +
                  "rstrip": false,
         | 
| 1817 | 
            +
                  "single_word": false,
         | 
| 1818 | 
            +
                  "special": true
         | 
| 1819 | 
            +
                },
         | 
| 1820 | 
            +
                "227": {
         | 
| 1821 | 
            +
                  "content": "[extra_id_65]",
         | 
| 1822 | 
            +
                  "lstrip": false,
         | 
| 1823 | 
            +
                  "normalized": false,
         | 
| 1824 | 
            +
                  "rstrip": false,
         | 
| 1825 | 
            +
                  "single_word": false,
         | 
| 1826 | 
            +
                  "special": true
         | 
| 1827 | 
            +
                },
         | 
| 1828 | 
            +
                "228": {
         | 
| 1829 | 
            +
                  "content": "[extra_id_66]",
         | 
| 1830 | 
            +
                  "lstrip": false,
         | 
| 1831 | 
            +
                  "normalized": false,
         | 
| 1832 | 
            +
                  "rstrip": false,
         | 
| 1833 | 
            +
                  "single_word": false,
         | 
| 1834 | 
            +
                  "special": true
         | 
| 1835 | 
            +
                },
         | 
| 1836 | 
            +
                "229": {
         | 
| 1837 | 
            +
                  "content": "[extra_id_67]",
         | 
| 1838 | 
            +
                  "lstrip": false,
         | 
| 1839 | 
            +
                  "normalized": false,
         | 
| 1840 | 
            +
                  "rstrip": false,
         | 
| 1841 | 
            +
                  "single_word": false,
         | 
| 1842 | 
            +
                  "special": true
         | 
| 1843 | 
            +
                },
         | 
| 1844 | 
            +
                "230": {
         | 
| 1845 | 
            +
                  "content": "[extra_id_68]",
         | 
| 1846 | 
            +
                  "lstrip": false,
         | 
| 1847 | 
            +
                  "normalized": false,
         | 
| 1848 | 
            +
                  "rstrip": false,
         | 
| 1849 | 
            +
                  "single_word": false,
         | 
| 1850 | 
            +
                  "special": true
         | 
| 1851 | 
            +
                },
         | 
| 1852 | 
            +
                "231": {
         | 
| 1853 | 
            +
                  "content": "[extra_id_69]",
         | 
| 1854 | 
            +
                  "lstrip": false,
         | 
| 1855 | 
            +
                  "normalized": false,
         | 
| 1856 | 
            +
                  "rstrip": false,
         | 
| 1857 | 
            +
                  "single_word": false,
         | 
| 1858 | 
            +
                  "special": true
         | 
| 1859 | 
            +
                },
         | 
| 1860 | 
            +
                "232": {
         | 
| 1861 | 
            +
                  "content": "[extra_id_70]",
         | 
| 1862 | 
            +
                  "lstrip": false,
         | 
| 1863 | 
            +
                  "normalized": false,
         | 
| 1864 | 
            +
                  "rstrip": false,
         | 
| 1865 | 
            +
                  "single_word": false,
         | 
| 1866 | 
            +
                  "special": true
         | 
| 1867 | 
            +
                },
         | 
| 1868 | 
            +
                "233": {
         | 
| 1869 | 
            +
                  "content": "[extra_id_71]",
         | 
| 1870 | 
            +
                  "lstrip": false,
         | 
| 1871 | 
            +
                  "normalized": false,
         | 
| 1872 | 
            +
                  "rstrip": false,
         | 
| 1873 | 
            +
                  "single_word": false,
         | 
| 1874 | 
            +
                  "special": true
         | 
| 1875 | 
            +
                },
         | 
| 1876 | 
            +
                "234": {
         | 
| 1877 | 
            +
                  "content": "[extra_id_72]",
         | 
| 1878 | 
            +
                  "lstrip": false,
         | 
| 1879 | 
            +
                  "normalized": false,
         | 
| 1880 | 
            +
                  "rstrip": false,
         | 
| 1881 | 
            +
                  "single_word": false,
         | 
| 1882 | 
            +
                  "special": true
         | 
| 1883 | 
            +
                },
         | 
| 1884 | 
            +
                "235": {
         | 
| 1885 | 
            +
                  "content": "[extra_id_73]",
         | 
| 1886 | 
            +
                  "lstrip": false,
         | 
| 1887 | 
            +
                  "normalized": false,
         | 
| 1888 | 
            +
                  "rstrip": false,
         | 
| 1889 | 
            +
                  "single_word": false,
         | 
| 1890 | 
            +
                  "special": true
         | 
| 1891 | 
            +
                },
         | 
| 1892 | 
            +
                "236": {
         | 
| 1893 | 
            +
                  "content": "[extra_id_74]",
         | 
| 1894 | 
            +
                  "lstrip": false,
         | 
| 1895 | 
            +
                  "normalized": false,
         | 
| 1896 | 
            +
                  "rstrip": false,
         | 
| 1897 | 
            +
                  "single_word": false,
         | 
| 1898 | 
            +
                  "special": true
         | 
| 1899 | 
            +
                },
         | 
| 1900 | 
            +
                "237": {
         | 
| 1901 | 
            +
                  "content": "[extra_id_75]",
         | 
| 1902 | 
            +
                  "lstrip": false,
         | 
| 1903 | 
            +
                  "normalized": false,
         | 
| 1904 | 
            +
                  "rstrip": false,
         | 
| 1905 | 
            +
                  "single_word": false,
         | 
| 1906 | 
            +
                  "special": true
         | 
| 1907 | 
            +
                },
         | 
| 1908 | 
            +
                "238": {
         | 
| 1909 | 
            +
                  "content": "[extra_id_76]",
         | 
| 1910 | 
            +
                  "lstrip": false,
         | 
| 1911 | 
            +
                  "normalized": false,
         | 
| 1912 | 
            +
                  "rstrip": false,
         | 
| 1913 | 
            +
                  "single_word": false,
         | 
| 1914 | 
            +
                  "special": true
         | 
| 1915 | 
            +
                },
         | 
| 1916 | 
            +
                "239": {
         | 
| 1917 | 
            +
                  "content": "[extra_id_77]",
         | 
| 1918 | 
            +
                  "lstrip": false,
         | 
| 1919 | 
            +
                  "normalized": false,
         | 
| 1920 | 
            +
                  "rstrip": false,
         | 
| 1921 | 
            +
                  "single_word": false,
         | 
| 1922 | 
            +
                  "special": true
         | 
| 1923 | 
            +
                },
         | 
| 1924 | 
            +
                "240": {
         | 
| 1925 | 
            +
                  "content": "[extra_id_78]",
         | 
| 1926 | 
            +
                  "lstrip": false,
         | 
| 1927 | 
            +
                  "normalized": false,
         | 
| 1928 | 
            +
                  "rstrip": false,
         | 
| 1929 | 
            +
                  "single_word": false,
         | 
| 1930 | 
            +
                  "special": true
         | 
| 1931 | 
            +
                },
         | 
| 1932 | 
            +
                "241": {
         | 
| 1933 | 
            +
                  "content": "[extra_id_79]",
         | 
| 1934 | 
            +
                  "lstrip": false,
         | 
| 1935 | 
            +
                  "normalized": false,
         | 
| 1936 | 
            +
                  "rstrip": false,
         | 
| 1937 | 
            +
                  "single_word": false,
         | 
| 1938 | 
            +
                  "special": true
         | 
| 1939 | 
            +
                },
         | 
| 1940 | 
            +
                "242": {
         | 
| 1941 | 
            +
                  "content": "[extra_id_80]",
         | 
| 1942 | 
            +
                  "lstrip": false,
         | 
| 1943 | 
            +
                  "normalized": false,
         | 
| 1944 | 
            +
                  "rstrip": false,
         | 
| 1945 | 
            +
                  "single_word": false,
         | 
| 1946 | 
            +
                  "special": true
         | 
| 1947 | 
            +
                },
         | 
| 1948 | 
            +
                "243": {
         | 
| 1949 | 
            +
                  "content": "[extra_id_81]",
         | 
| 1950 | 
            +
                  "lstrip": false,
         | 
| 1951 | 
            +
                  "normalized": false,
         | 
| 1952 | 
            +
                  "rstrip": false,
         | 
| 1953 | 
            +
                  "single_word": false,
         | 
| 1954 | 
            +
                  "special": true
         | 
| 1955 | 
            +
                },
         | 
| 1956 | 
            +
                "244": {
         | 
| 1957 | 
            +
                  "content": "[extra_id_82]",
         | 
| 1958 | 
            +
                  "lstrip": false,
         | 
| 1959 | 
            +
                  "normalized": false,
         | 
| 1960 | 
            +
                  "rstrip": false,
         | 
| 1961 | 
            +
                  "single_word": false,
         | 
| 1962 | 
            +
                  "special": true
         | 
| 1963 | 
            +
                },
         | 
| 1964 | 
            +
                "245": {
         | 
| 1965 | 
            +
                  "content": "[extra_id_83]",
         | 
| 1966 | 
            +
                  "lstrip": false,
         | 
| 1967 | 
            +
                  "normalized": false,
         | 
| 1968 | 
            +
                  "rstrip": false,
         | 
| 1969 | 
            +
                  "single_word": false,
         | 
| 1970 | 
            +
                  "special": true
         | 
| 1971 | 
            +
                },
         | 
| 1972 | 
            +
                "246": {
         | 
| 1973 | 
            +
                  "content": "[extra_id_84]",
         | 
| 1974 | 
            +
                  "lstrip": false,
         | 
| 1975 | 
            +
                  "normalized": false,
         | 
| 1976 | 
            +
                  "rstrip": false,
         | 
| 1977 | 
            +
                  "single_word": false,
         | 
| 1978 | 
            +
                  "special": true
         | 
| 1979 | 
            +
                },
         | 
| 1980 | 
            +
                "247": {
         | 
| 1981 | 
            +
                  "content": "[extra_id_85]",
         | 
| 1982 | 
            +
                  "lstrip": false,
         | 
| 1983 | 
            +
                  "normalized": false,
         | 
| 1984 | 
            +
                  "rstrip": false,
         | 
| 1985 | 
            +
                  "single_word": false,
         | 
| 1986 | 
            +
                  "special": true
         | 
| 1987 | 
            +
                },
         | 
| 1988 | 
            +
                "248": {
         | 
| 1989 | 
            +
                  "content": "[extra_id_86]",
         | 
| 1990 | 
            +
                  "lstrip": false,
         | 
| 1991 | 
            +
                  "normalized": false,
         | 
| 1992 | 
            +
                  "rstrip": false,
         | 
| 1993 | 
            +
                  "single_word": false,
         | 
| 1994 | 
            +
                  "special": true
         | 
| 1995 | 
            +
                },
         | 
| 1996 | 
            +
                "249": {
         | 
| 1997 | 
            +
                  "content": "[extra_id_87]",
         | 
| 1998 | 
            +
                  "lstrip": false,
         | 
| 1999 | 
            +
                  "normalized": false,
         | 
| 2000 | 
            +
                  "rstrip": false,
         | 
| 2001 | 
            +
                  "single_word": false,
         | 
| 2002 | 
            +
                  "special": true
         | 
| 2003 | 
            +
                },
         | 
| 2004 | 
            +
                "250": {
         | 
| 2005 | 
            +
                  "content": "[extra_id_88]",
         | 
| 2006 | 
            +
                  "lstrip": false,
         | 
| 2007 | 
            +
                  "normalized": false,
         | 
| 2008 | 
            +
                  "rstrip": false,
         | 
| 2009 | 
            +
                  "single_word": false,
         | 
| 2010 | 
            +
                  "special": true
         | 
| 2011 | 
            +
                },
         | 
| 2012 | 
            +
                "251": {
         | 
| 2013 | 
            +
                  "content": "[extra_id_89]",
         | 
| 2014 | 
            +
                  "lstrip": false,
         | 
| 2015 | 
            +
                  "normalized": false,
         | 
| 2016 | 
            +
                  "rstrip": false,
         | 
| 2017 | 
            +
                  "single_word": false,
         | 
| 2018 | 
            +
                  "special": true
         | 
| 2019 | 
            +
                },
         | 
| 2020 | 
            +
                "252": {
         | 
| 2021 | 
            +
                  "content": "[extra_id_90]",
         | 
| 2022 | 
            +
                  "lstrip": false,
         | 
| 2023 | 
            +
                  "normalized": false,
         | 
| 2024 | 
            +
                  "rstrip": false,
         | 
| 2025 | 
            +
                  "single_word": false,
         | 
| 2026 | 
            +
                  "special": true
         | 
| 2027 | 
            +
                },
         | 
| 2028 | 
            +
                "253": {
         | 
| 2029 | 
            +
                  "content": "[extra_id_91]",
         | 
| 2030 | 
            +
                  "lstrip": false,
         | 
| 2031 | 
            +
                  "normalized": false,
         | 
| 2032 | 
            +
                  "rstrip": false,
         | 
| 2033 | 
            +
                  "single_word": false,
         | 
| 2034 | 
            +
                  "special": true
         | 
| 2035 | 
            +
                },
         | 
| 2036 | 
            +
                "254": {
         | 
| 2037 | 
            +
                  "content": "[extra_id_92]",
         | 
| 2038 | 
            +
                  "lstrip": false,
         | 
| 2039 | 
            +
                  "normalized": false,
         | 
| 2040 | 
            +
                  "rstrip": false,
         | 
| 2041 | 
            +
                  "single_word": false,
         | 
| 2042 | 
            +
                  "special": true
         | 
| 2043 | 
            +
                },
         | 
| 2044 | 
            +
                "255": {
         | 
| 2045 | 
            +
                  "content": "[extra_id_93]",
         | 
| 2046 | 
            +
                  "lstrip": false,
         | 
| 2047 | 
            +
                  "normalized": false,
         | 
| 2048 | 
            +
                  "rstrip": false,
         | 
| 2049 | 
            +
                  "single_word": false,
         | 
| 2050 | 
            +
                  "special": true
         | 
| 2051 | 
            +
                },
         | 
| 2052 | 
            +
                "256": {
         | 
| 2053 | 
            +
                  "content": "[extra_id_94]",
         | 
| 2054 | 
            +
                  "lstrip": false,
         | 
| 2055 | 
            +
                  "normalized": false,
         | 
| 2056 | 
            +
                  "rstrip": false,
         | 
| 2057 | 
            +
                  "single_word": false,
         | 
| 2058 | 
            +
                  "special": true
         | 
| 2059 | 
            +
                },
         | 
| 2060 | 
            +
                "257": {
         | 
| 2061 | 
            +
                  "content": "[extra_id_95]",
         | 
| 2062 | 
            +
                  "lstrip": false,
         | 
| 2063 | 
            +
                  "normalized": false,
         | 
| 2064 | 
            +
                  "rstrip": false,
         | 
| 2065 | 
            +
                  "single_word": false,
         | 
| 2066 | 
            +
                  "special": true
         | 
| 2067 | 
            +
                },
         | 
| 2068 | 
            +
                "258": {
         | 
| 2069 | 
            +
                  "content": "[extra_id_96]",
         | 
| 2070 | 
            +
                  "lstrip": false,
         | 
| 2071 | 
            +
                  "normalized": false,
         | 
| 2072 | 
            +
                  "rstrip": false,
         | 
| 2073 | 
            +
                  "single_word": false,
         | 
| 2074 | 
            +
                  "special": true
         | 
| 2075 | 
            +
                },
         | 
| 2076 | 
            +
                "259": {
         | 
| 2077 | 
            +
                  "content": "[extra_id_97]",
         | 
| 2078 | 
            +
                  "lstrip": false,
         | 
| 2079 | 
            +
                  "normalized": false,
         | 
| 2080 | 
            +
                  "rstrip": false,
         | 
| 2081 | 
            +
                  "single_word": false,
         | 
| 2082 | 
            +
                  "special": true
         | 
| 2083 | 
            +
                },
         | 
| 2084 | 
            +
                "260": {
         | 
| 2085 | 
            +
                  "content": "[extra_id_98]",
         | 
| 2086 | 
            +
                  "lstrip": false,
         | 
| 2087 | 
            +
                  "normalized": false,
         | 
| 2088 | 
            +
                  "rstrip": false,
         | 
| 2089 | 
            +
                  "single_word": false,
         | 
| 2090 | 
            +
                  "special": true
         | 
| 2091 | 
            +
                },
         | 
| 2092 | 
            +
                "261": {
         | 
| 2093 | 
            +
                  "content": "[extra_id_99]",
         | 
| 2094 | 
            +
                  "lstrip": false,
         | 
| 2095 | 
            +
                  "normalized": false,
         | 
| 2096 | 
            +
                  "rstrip": false,
         | 
| 2097 | 
            +
                  "single_word": false,
         | 
| 2098 | 
            +
                  "special": true
         | 
| 2099 | 
            +
                },
         | 
| 2100 | 
            +
                "262": {
         | 
| 2101 | 
            +
                  "content": "[extra_id_100]",
         | 
| 2102 | 
            +
                  "lstrip": false,
         | 
| 2103 | 
            +
                  "normalized": false,
         | 
| 2104 | 
            +
                  "rstrip": false,
         | 
| 2105 | 
            +
                  "single_word": false,
         | 
| 2106 | 
            +
                  "special": true
         | 
| 2107 | 
            +
                },
         | 
| 2108 | 
            +
                "263": {
         | 
| 2109 | 
            +
                  "content": "[extra_id_101]",
         | 
| 2110 | 
            +
                  "lstrip": false,
         | 
| 2111 | 
            +
                  "normalized": false,
         | 
| 2112 | 
            +
                  "rstrip": false,
         | 
| 2113 | 
            +
                  "single_word": false,
         | 
| 2114 | 
            +
                  "special": true
         | 
| 2115 | 
            +
                },
         | 
| 2116 | 
            +
                "264": {
         | 
| 2117 | 
            +
                  "content": "[extra_id_102]",
         | 
| 2118 | 
            +
                  "lstrip": false,
         | 
| 2119 | 
            +
                  "normalized": false,
         | 
| 2120 | 
            +
                  "rstrip": false,
         | 
| 2121 | 
            +
                  "single_word": false,
         | 
| 2122 | 
            +
                  "special": true
         | 
| 2123 | 
            +
                },
         | 
| 2124 | 
            +
                "265": {
         | 
| 2125 | 
            +
                  "content": "[extra_id_103]",
         | 
| 2126 | 
            +
                  "lstrip": false,
         | 
| 2127 | 
            +
                  "normalized": false,
         | 
| 2128 | 
            +
                  "rstrip": false,
         | 
| 2129 | 
            +
                  "single_word": false,
         | 
| 2130 | 
            +
                  "special": true
         | 
| 2131 | 
            +
                },
         | 
| 2132 | 
            +
                "266": {
         | 
| 2133 | 
            +
                  "content": "[extra_id_104]",
         | 
| 2134 | 
            +
                  "lstrip": false,
         | 
| 2135 | 
            +
                  "normalized": false,
         | 
| 2136 | 
            +
                  "rstrip": false,
         | 
| 2137 | 
            +
                  "single_word": false,
         | 
| 2138 | 
            +
                  "special": true
         | 
| 2139 | 
            +
                },
         | 
| 2140 | 
            +
                "267": {
         | 
| 2141 | 
            +
                  "content": "[extra_id_105]",
         | 
| 2142 | 
            +
                  "lstrip": false,
         | 
| 2143 | 
            +
                  "normalized": false,
         | 
| 2144 | 
            +
                  "rstrip": false,
         | 
| 2145 | 
            +
                  "single_word": false,
         | 
| 2146 | 
            +
                  "special": true
         | 
| 2147 | 
            +
                },
         | 
| 2148 | 
            +
                "268": {
         | 
| 2149 | 
            +
                  "content": "[extra_id_106]",
         | 
| 2150 | 
            +
                  "lstrip": false,
         | 
| 2151 | 
            +
                  "normalized": false,
         | 
| 2152 | 
            +
                  "rstrip": false,
         | 
| 2153 | 
            +
                  "single_word": false,
         | 
| 2154 | 
            +
                  "special": true
         | 
| 2155 | 
            +
                },
         | 
| 2156 | 
            +
                "269": {
         | 
| 2157 | 
            +
                  "content": "[extra_id_107]",
         | 
| 2158 | 
            +
                  "lstrip": false,
         | 
| 2159 | 
            +
                  "normalized": false,
         | 
| 2160 | 
            +
                  "rstrip": false,
         | 
| 2161 | 
            +
                  "single_word": false,
         | 
| 2162 | 
            +
                  "special": true
         | 
| 2163 | 
            +
                },
         | 
| 2164 | 
            +
                "270": {
         | 
| 2165 | 
            +
                  "content": "[extra_id_108]",
         | 
| 2166 | 
            +
                  "lstrip": false,
         | 
| 2167 | 
            +
                  "normalized": false,
         | 
| 2168 | 
            +
                  "rstrip": false,
         | 
| 2169 | 
            +
                  "single_word": false,
         | 
| 2170 | 
            +
                  "special": true
         | 
| 2171 | 
            +
                },
         | 
| 2172 | 
            +
                "271": {
         | 
| 2173 | 
            +
                  "content": "[extra_id_109]",
         | 
| 2174 | 
            +
                  "lstrip": false,
         | 
| 2175 | 
            +
                  "normalized": false,
         | 
| 2176 | 
            +
                  "rstrip": false,
         | 
| 2177 | 
            +
                  "single_word": false,
         | 
| 2178 | 
            +
                  "special": true
         | 
| 2179 | 
            +
                },
         | 
| 2180 | 
            +
                "272": {
         | 
| 2181 | 
            +
                  "content": "[extra_id_110]",
         | 
| 2182 | 
            +
                  "lstrip": false,
         | 
| 2183 | 
            +
                  "normalized": false,
         | 
| 2184 | 
            +
                  "rstrip": false,
         | 
| 2185 | 
            +
                  "single_word": false,
         | 
| 2186 | 
            +
                  "special": true
         | 
| 2187 | 
            +
                },
         | 
| 2188 | 
            +
                "273": {
         | 
| 2189 | 
            +
                  "content": "[extra_id_111]",
         | 
| 2190 | 
            +
                  "lstrip": false,
         | 
| 2191 | 
            +
                  "normalized": false,
         | 
| 2192 | 
            +
                  "rstrip": false,
         | 
| 2193 | 
            +
                  "single_word": false,
         | 
| 2194 | 
            +
                  "special": true
         | 
| 2195 | 
            +
                },
         | 
| 2196 | 
            +
                "274": {
         | 
| 2197 | 
            +
                  "content": "[extra_id_112]",
         | 
| 2198 | 
            +
                  "lstrip": false,
         | 
| 2199 | 
            +
                  "normalized": false,
         | 
| 2200 | 
            +
                  "rstrip": false,
         | 
| 2201 | 
            +
                  "single_word": false,
         | 
| 2202 | 
            +
                  "special": true
         | 
| 2203 | 
            +
                },
         | 
| 2204 | 
            +
                "275": {
         | 
| 2205 | 
            +
                  "content": "[extra_id_113]",
         | 
| 2206 | 
            +
                  "lstrip": false,
         | 
| 2207 | 
            +
                  "normalized": false,
         | 
| 2208 | 
            +
                  "rstrip": false,
         | 
| 2209 | 
            +
                  "single_word": false,
         | 
| 2210 | 
            +
                  "special": true
         | 
| 2211 | 
            +
                },
         | 
| 2212 | 
            +
                "276": {
         | 
| 2213 | 
            +
                  "content": "[extra_id_114]",
         | 
| 2214 | 
            +
                  "lstrip": false,
         | 
| 2215 | 
            +
                  "normalized": false,
         | 
| 2216 | 
            +
                  "rstrip": false,
         | 
| 2217 | 
            +
                  "single_word": false,
         | 
| 2218 | 
            +
                  "special": true
         | 
| 2219 | 
            +
                },
         | 
| 2220 | 
            +
                "277": {
         | 
| 2221 | 
            +
                  "content": "[extra_id_115]",
         | 
| 2222 | 
            +
                  "lstrip": false,
         | 
| 2223 | 
            +
                  "normalized": false,
         | 
| 2224 | 
            +
                  "rstrip": false,
         | 
| 2225 | 
            +
                  "single_word": false,
         | 
| 2226 | 
            +
                  "special": true
         | 
| 2227 | 
            +
                },
         | 
| 2228 | 
            +
                "278": {
         | 
| 2229 | 
            +
                  "content": "[extra_id_116]",
         | 
| 2230 | 
            +
                  "lstrip": false,
         | 
| 2231 | 
            +
                  "normalized": false,
         | 
| 2232 | 
            +
                  "rstrip": false,
         | 
| 2233 | 
            +
                  "single_word": false,
         | 
| 2234 | 
            +
                  "special": true
         | 
| 2235 | 
            +
                },
         | 
| 2236 | 
            +
                "279": {
         | 
| 2237 | 
            +
                  "content": "[extra_id_117]",
         | 
| 2238 | 
            +
                  "lstrip": false,
         | 
| 2239 | 
            +
                  "normalized": false,
         | 
| 2240 | 
            +
                  "rstrip": false,
         | 
| 2241 | 
            +
                  "single_word": false,
         | 
| 2242 | 
            +
                  "special": true
         | 
| 2243 | 
            +
                },
         | 
| 2244 | 
            +
                "280": {
         | 
| 2245 | 
            +
                  "content": "[extra_id_118]",
         | 
| 2246 | 
            +
                  "lstrip": false,
         | 
| 2247 | 
            +
                  "normalized": false,
         | 
| 2248 | 
            +
                  "rstrip": false,
         | 
| 2249 | 
            +
                  "single_word": false,
         | 
| 2250 | 
            +
                  "special": true
         | 
| 2251 | 
            +
                },
         | 
| 2252 | 
            +
                "281": {
         | 
| 2253 | 
            +
                  "content": "[extra_id_119]",
         | 
| 2254 | 
            +
                  "lstrip": false,
         | 
| 2255 | 
            +
                  "normalized": false,
         | 
| 2256 | 
            +
                  "rstrip": false,
         | 
| 2257 | 
            +
                  "single_word": false,
         | 
| 2258 | 
            +
                  "special": true
         | 
| 2259 | 
            +
                },
         | 
| 2260 | 
            +
                "282": {
         | 
| 2261 | 
            +
                  "content": "[extra_id_120]",
         | 
| 2262 | 
            +
                  "lstrip": false,
         | 
| 2263 | 
            +
                  "normalized": false,
         | 
| 2264 | 
            +
                  "rstrip": false,
         | 
| 2265 | 
            +
                  "single_word": false,
         | 
| 2266 | 
            +
                  "special": true
         | 
| 2267 | 
            +
                },
         | 
| 2268 | 
            +
                "283": {
         | 
| 2269 | 
            +
                  "content": "[extra_id_121]",
         | 
| 2270 | 
            +
                  "lstrip": false,
         | 
| 2271 | 
            +
                  "normalized": false,
         | 
| 2272 | 
            +
                  "rstrip": false,
         | 
| 2273 | 
            +
                  "single_word": false,
         | 
| 2274 | 
            +
                  "special": true
         | 
| 2275 | 
            +
                },
         | 
| 2276 | 
            +
                "284": {
         | 
| 2277 | 
            +
                  "content": "[extra_id_122]",
         | 
| 2278 | 
            +
                  "lstrip": false,
         | 
| 2279 | 
            +
                  "normalized": false,
         | 
| 2280 | 
            +
                  "rstrip": false,
         | 
| 2281 | 
            +
                  "single_word": false,
         | 
| 2282 | 
            +
                  "special": true
         | 
| 2283 | 
            +
                },
         | 
| 2284 | 
            +
                "285": {
         | 
| 2285 | 
            +
                  "content": "[extra_id_123]",
         | 
| 2286 | 
            +
                  "lstrip": false,
         | 
| 2287 | 
            +
                  "normalized": false,
         | 
| 2288 | 
            +
                  "rstrip": false,
         | 
| 2289 | 
            +
                  "single_word": false,
         | 
| 2290 | 
            +
                  "special": true
         | 
| 2291 | 
            +
                },
         | 
| 2292 | 
            +
                "286": {
         | 
| 2293 | 
            +
                  "content": "[extra_id_124]",
         | 
| 2294 | 
            +
                  "lstrip": false,
         | 
| 2295 | 
            +
                  "normalized": false,
         | 
| 2296 | 
            +
                  "rstrip": false,
         | 
| 2297 | 
            +
                  "single_word": false,
         | 
| 2298 | 
            +
                  "special": true
         | 
| 2299 | 
            +
                },
         | 
| 2300 | 
            +
                "287": {
         | 
| 2301 | 
            +
                  "content": "[extra_id_125]",
         | 
| 2302 | 
            +
                  "lstrip": false,
         | 
| 2303 | 
            +
                  "normalized": false,
         | 
| 2304 | 
            +
                  "rstrip": false,
         | 
| 2305 | 
            +
                  "single_word": false,
         | 
| 2306 | 
            +
                  "special": true
         | 
| 2307 | 
            +
                },
         | 
| 2308 | 
            +
                "288": {
         | 
| 2309 | 
            +
                  "content": "[extra_id_126]",
         | 
| 2310 | 
            +
                  "lstrip": false,
         | 
| 2311 | 
            +
                  "normalized": false,
         | 
| 2312 | 
            +
                  "rstrip": false,
         | 
| 2313 | 
            +
                  "single_word": false,
         | 
| 2314 | 
            +
                  "special": true
         | 
| 2315 | 
            +
                },
         | 
| 2316 | 
            +
                "289": {
         | 
| 2317 | 
            +
                  "content": "[extra_id_127]",
         | 
| 2318 | 
            +
                  "lstrip": false,
         | 
| 2319 | 
            +
                  "normalized": false,
         | 
| 2320 | 
            +
                  "rstrip": false,
         | 
| 2321 | 
            +
                  "single_word": false,
         | 
| 2322 | 
            +
                  "special": true
         | 
| 2323 | 
            +
                },
         | 
| 2324 | 
            +
                "290": {
         | 
| 2325 | 
            +
                  "content": "[extra_id_128]",
         | 
| 2326 | 
            +
                  "lstrip": false,
         | 
| 2327 | 
            +
                  "normalized": false,
         | 
| 2328 | 
            +
                  "rstrip": false,
         | 
| 2329 | 
            +
                  "single_word": false,
         | 
| 2330 | 
            +
                  "special": true
         | 
| 2331 | 
            +
                },
         | 
| 2332 | 
            +
                "291": {
         | 
| 2333 | 
            +
                  "content": "[extra_id_129]",
         | 
| 2334 | 
            +
                  "lstrip": false,
         | 
| 2335 | 
            +
                  "normalized": false,
         | 
| 2336 | 
            +
                  "rstrip": false,
         | 
| 2337 | 
            +
                  "single_word": false,
         | 
| 2338 | 
            +
                  "special": true
         | 
| 2339 | 
            +
                },
         | 
| 2340 | 
            +
                "292": {
         | 
| 2341 | 
            +
                  "content": "[extra_id_130]",
         | 
| 2342 | 
            +
                  "lstrip": false,
         | 
| 2343 | 
            +
                  "normalized": false,
         | 
| 2344 | 
            +
                  "rstrip": false,
         | 
| 2345 | 
            +
                  "single_word": false,
         | 
| 2346 | 
            +
                  "special": true
         | 
| 2347 | 
            +
                },
         | 
| 2348 | 
            +
                "293": {
         | 
| 2349 | 
            +
                  "content": "[extra_id_131]",
         | 
| 2350 | 
            +
                  "lstrip": false,
         | 
| 2351 | 
            +
                  "normalized": false,
         | 
| 2352 | 
            +
                  "rstrip": false,
         | 
| 2353 | 
            +
                  "single_word": false,
         | 
| 2354 | 
            +
                  "special": true
         | 
| 2355 | 
            +
                },
         | 
| 2356 | 
            +
                "294": {
         | 
| 2357 | 
            +
                  "content": "[extra_id_132]",
         | 
| 2358 | 
            +
                  "lstrip": false,
         | 
| 2359 | 
            +
                  "normalized": false,
         | 
| 2360 | 
            +
                  "rstrip": false,
         | 
| 2361 | 
            +
                  "single_word": false,
         | 
| 2362 | 
            +
                  "special": true
         | 
| 2363 | 
            +
                },
         | 
| 2364 | 
            +
                "295": {
         | 
| 2365 | 
            +
                  "content": "[extra_id_133]",
         | 
| 2366 | 
            +
                  "lstrip": false,
         | 
| 2367 | 
            +
                  "normalized": false,
         | 
| 2368 | 
            +
                  "rstrip": false,
         | 
| 2369 | 
            +
                  "single_word": false,
         | 
| 2370 | 
            +
                  "special": true
         | 
| 2371 | 
            +
                },
         | 
| 2372 | 
            +
                "296": {
         | 
| 2373 | 
            +
                  "content": "[extra_id_134]",
         | 
| 2374 | 
            +
                  "lstrip": false,
         | 
| 2375 | 
            +
                  "normalized": false,
         | 
| 2376 | 
            +
                  "rstrip": false,
         | 
| 2377 | 
            +
                  "single_word": false,
         | 
| 2378 | 
            +
                  "special": true
         | 
| 2379 | 
            +
                },
         | 
| 2380 | 
            +
                "297": {
         | 
| 2381 | 
            +
                  "content": "[extra_id_135]",
         | 
| 2382 | 
            +
                  "lstrip": false,
         | 
| 2383 | 
            +
                  "normalized": false,
         | 
| 2384 | 
            +
                  "rstrip": false,
         | 
| 2385 | 
            +
                  "single_word": false,
         | 
| 2386 | 
            +
                  "special": true
         | 
| 2387 | 
            +
                },
         | 
| 2388 | 
            +
                "298": {
         | 
| 2389 | 
            +
                  "content": "[extra_id_136]",
         | 
| 2390 | 
            +
                  "lstrip": false,
         | 
| 2391 | 
            +
                  "normalized": false,
         | 
| 2392 | 
            +
                  "rstrip": false,
         | 
| 2393 | 
            +
                  "single_word": false,
         | 
| 2394 | 
            +
                  "special": true
         | 
| 2395 | 
            +
                },
         | 
| 2396 | 
            +
                "299": {
         | 
| 2397 | 
            +
                  "content": "[extra_id_137]",
         | 
| 2398 | 
            +
                  "lstrip": false,
         | 
| 2399 | 
            +
                  "normalized": false,
         | 
| 2400 | 
            +
                  "rstrip": false,
         | 
| 2401 | 
            +
                  "single_word": false,
         | 
| 2402 | 
            +
                  "special": true
         | 
| 2403 | 
            +
                },
         | 
| 2404 | 
            +
                "300": {
         | 
| 2405 | 
            +
                  "content": "[extra_id_138]",
         | 
| 2406 | 
            +
                  "lstrip": false,
         | 
| 2407 | 
            +
                  "normalized": false,
         | 
| 2408 | 
            +
                  "rstrip": false,
         | 
| 2409 | 
            +
                  "single_word": false,
         | 
| 2410 | 
            +
                  "special": true
         | 
| 2411 | 
            +
                },
         | 
| 2412 | 
            +
                "301": {
         | 
| 2413 | 
            +
                  "content": "[extra_id_139]",
         | 
| 2414 | 
            +
                  "lstrip": false,
         | 
| 2415 | 
            +
                  "normalized": false,
         | 
| 2416 | 
            +
                  "rstrip": false,
         | 
| 2417 | 
            +
                  "single_word": false,
         | 
| 2418 | 
            +
                  "special": true
         | 
| 2419 | 
            +
                },
         | 
| 2420 | 
            +
                "302": {
         | 
| 2421 | 
            +
                  "content": "[extra_id_140]",
         | 
| 2422 | 
            +
                  "lstrip": false,
         | 
| 2423 | 
            +
                  "normalized": false,
         | 
| 2424 | 
            +
                  "rstrip": false,
         | 
| 2425 | 
            +
                  "single_word": false,
         | 
| 2426 | 
            +
                  "special": true
         | 
| 2427 | 
            +
                },
         | 
| 2428 | 
            +
                "303": {
         | 
| 2429 | 
            +
                  "content": "[extra_id_141]",
         | 
| 2430 | 
            +
                  "lstrip": false,
         | 
| 2431 | 
            +
                  "normalized": false,
         | 
| 2432 | 
            +
                  "rstrip": false,
         | 
| 2433 | 
            +
                  "single_word": false,
         | 
| 2434 | 
            +
                  "special": true
         | 
| 2435 | 
            +
                },
         | 
| 2436 | 
            +
                "304": {
         | 
| 2437 | 
            +
                  "content": "[extra_id_142]",
         | 
| 2438 | 
            +
                  "lstrip": false,
         | 
| 2439 | 
            +
                  "normalized": false,
         | 
| 2440 | 
            +
                  "rstrip": false,
         | 
| 2441 | 
            +
                  "single_word": false,
         | 
| 2442 | 
            +
                  "special": true
         | 
| 2443 | 
            +
                },
         | 
| 2444 | 
            +
                "305": {
         | 
| 2445 | 
            +
                  "content": "[extra_id_143]",
         | 
| 2446 | 
            +
                  "lstrip": false,
         | 
| 2447 | 
            +
                  "normalized": false,
         | 
| 2448 | 
            +
                  "rstrip": false,
         | 
| 2449 | 
            +
                  "single_word": false,
         | 
| 2450 | 
            +
                  "special": true
         | 
| 2451 | 
            +
                },
         | 
| 2452 | 
            +
                "306": {
         | 
| 2453 | 
            +
                  "content": "[extra_id_144]",
         | 
| 2454 | 
            +
                  "lstrip": false,
         | 
| 2455 | 
            +
                  "normalized": false,
         | 
| 2456 | 
            +
                  "rstrip": false,
         | 
| 2457 | 
            +
                  "single_word": false,
         | 
| 2458 | 
            +
                  "special": true
         | 
| 2459 | 
            +
                },
         | 
| 2460 | 
            +
                "307": {
         | 
| 2461 | 
            +
                  "content": "[extra_id_145]",
         | 
| 2462 | 
            +
                  "lstrip": false,
         | 
| 2463 | 
            +
                  "normalized": false,
         | 
| 2464 | 
            +
                  "rstrip": false,
         | 
| 2465 | 
            +
                  "single_word": false,
         | 
| 2466 | 
            +
                  "special": true
         | 
| 2467 | 
            +
                },
         | 
| 2468 | 
            +
                "308": {
         | 
| 2469 | 
            +
                  "content": "[extra_id_146]",
         | 
| 2470 | 
            +
                  "lstrip": false,
         | 
| 2471 | 
            +
                  "normalized": false,
         | 
| 2472 | 
            +
                  "rstrip": false,
         | 
| 2473 | 
            +
                  "single_word": false,
         | 
| 2474 | 
            +
                  "special": true
         | 
| 2475 | 
            +
                },
         | 
| 2476 | 
            +
                "309": {
         | 
| 2477 | 
            +
                  "content": "[extra_id_147]",
         | 
| 2478 | 
            +
                  "lstrip": false,
         | 
| 2479 | 
            +
                  "normalized": false,
         | 
| 2480 | 
            +
                  "rstrip": false,
         | 
| 2481 | 
            +
                  "single_word": false,
         | 
| 2482 | 
            +
                  "special": true
         | 
| 2483 | 
            +
                },
         | 
| 2484 | 
            +
                "310": {
         | 
| 2485 | 
            +
                  "content": "[extra_id_148]",
         | 
| 2486 | 
            +
                  "lstrip": false,
         | 
| 2487 | 
            +
                  "normalized": false,
         | 
| 2488 | 
            +
                  "rstrip": false,
         | 
| 2489 | 
            +
                  "single_word": false,
         | 
| 2490 | 
            +
                  "special": true
         | 
| 2491 | 
            +
                },
         | 
| 2492 | 
            +
                "311": {
         | 
| 2493 | 
            +
                  "content": "[extra_id_149]",
         | 
| 2494 | 
            +
                  "lstrip": false,
         | 
| 2495 | 
            +
                  "normalized": false,
         | 
| 2496 | 
            +
                  "rstrip": false,
         | 
| 2497 | 
            +
                  "single_word": false,
         | 
| 2498 | 
            +
                  "special": true
         | 
| 2499 | 
            +
                },
         | 
| 2500 | 
            +
                "312": {
         | 
| 2501 | 
            +
                  "content": "[extra_id_150]",
         | 
| 2502 | 
            +
                  "lstrip": false,
         | 
| 2503 | 
            +
                  "normalized": false,
         | 
| 2504 | 
            +
                  "rstrip": false,
         | 
| 2505 | 
            +
                  "single_word": false,
         | 
| 2506 | 
            +
                  "special": true
         | 
| 2507 | 
            +
                },
         | 
| 2508 | 
            +
                "313": {
         | 
| 2509 | 
            +
                  "content": "[extra_id_151]",
         | 
| 2510 | 
            +
                  "lstrip": false,
         | 
| 2511 | 
            +
                  "normalized": false,
         | 
| 2512 | 
            +
                  "rstrip": false,
         | 
| 2513 | 
            +
                  "single_word": false,
         | 
| 2514 | 
            +
                  "special": true
         | 
| 2515 | 
            +
                },
         | 
| 2516 | 
            +
                "314": {
         | 
| 2517 | 
            +
                  "content": "[extra_id_152]",
         | 
| 2518 | 
            +
                  "lstrip": false,
         | 
| 2519 | 
            +
                  "normalized": false,
         | 
| 2520 | 
            +
                  "rstrip": false,
         | 
| 2521 | 
            +
                  "single_word": false,
         | 
| 2522 | 
            +
                  "special": true
         | 
| 2523 | 
            +
                },
         | 
| 2524 | 
            +
                "315": {
         | 
| 2525 | 
            +
                  "content": "[extra_id_153]",
         | 
| 2526 | 
            +
                  "lstrip": false,
         | 
| 2527 | 
            +
                  "normalized": false,
         | 
| 2528 | 
            +
                  "rstrip": false,
         | 
| 2529 | 
            +
                  "single_word": false,
         | 
| 2530 | 
            +
                  "special": true
         | 
| 2531 | 
            +
                },
         | 
| 2532 | 
            +
                "316": {
         | 
| 2533 | 
            +
                  "content": "[extra_id_154]",
         | 
| 2534 | 
            +
                  "lstrip": false,
         | 
| 2535 | 
            +
                  "normalized": false,
         | 
| 2536 | 
            +
                  "rstrip": false,
         | 
| 2537 | 
            +
                  "single_word": false,
         | 
| 2538 | 
            +
                  "special": true
         | 
| 2539 | 
            +
                },
         | 
| 2540 | 
            +
                "317": {
         | 
| 2541 | 
            +
                  "content": "[extra_id_155]",
         | 
| 2542 | 
            +
                  "lstrip": false,
         | 
| 2543 | 
            +
                  "normalized": false,
         | 
| 2544 | 
            +
                  "rstrip": false,
         | 
| 2545 | 
            +
                  "single_word": false,
         | 
| 2546 | 
            +
                  "special": true
         | 
| 2547 | 
            +
                },
         | 
| 2548 | 
            +
                "318": {
         | 
| 2549 | 
            +
                  "content": "[extra_id_156]",
         | 
| 2550 | 
            +
                  "lstrip": false,
         | 
| 2551 | 
            +
                  "normalized": false,
         | 
| 2552 | 
            +
                  "rstrip": false,
         | 
| 2553 | 
            +
                  "single_word": false,
         | 
| 2554 | 
            +
                  "special": true
         | 
| 2555 | 
            +
                },
         | 
| 2556 | 
            +
                "319": {
         | 
| 2557 | 
            +
                  "content": "[extra_id_157]",
         | 
| 2558 | 
            +
                  "lstrip": false,
         | 
| 2559 | 
            +
                  "normalized": false,
         | 
| 2560 | 
            +
                  "rstrip": false,
         | 
| 2561 | 
            +
                  "single_word": false,
         | 
| 2562 | 
            +
                  "special": true
         | 
| 2563 | 
            +
                },
         | 
| 2564 | 
            +
                "320": {
         | 
| 2565 | 
            +
                  "content": "[extra_id_158]",
         | 
| 2566 | 
            +
                  "lstrip": false,
         | 
| 2567 | 
            +
                  "normalized": false,
         | 
| 2568 | 
            +
                  "rstrip": false,
         | 
| 2569 | 
            +
                  "single_word": false,
         | 
| 2570 | 
            +
                  "special": true
         | 
| 2571 | 
            +
                },
         | 
| 2572 | 
            +
                "321": {
         | 
| 2573 | 
            +
                  "content": "[extra_id_159]",
         | 
| 2574 | 
            +
                  "lstrip": false,
         | 
| 2575 | 
            +
                  "normalized": false,
         | 
| 2576 | 
            +
                  "rstrip": false,
         | 
| 2577 | 
            +
                  "single_word": false,
         | 
| 2578 | 
            +
                  "special": true
         | 
| 2579 | 
            +
                },
         | 
| 2580 | 
            +
                "322": {
         | 
| 2581 | 
            +
                  "content": "[extra_id_160]",
         | 
| 2582 | 
            +
                  "lstrip": false,
         | 
| 2583 | 
            +
                  "normalized": false,
         | 
| 2584 | 
            +
                  "rstrip": false,
         | 
| 2585 | 
            +
                  "single_word": false,
         | 
| 2586 | 
            +
                  "special": true
         | 
| 2587 | 
            +
                },
         | 
| 2588 | 
            +
                "323": {
         | 
| 2589 | 
            +
                  "content": "[extra_id_161]",
         | 
| 2590 | 
            +
                  "lstrip": false,
         | 
| 2591 | 
            +
                  "normalized": false,
         | 
| 2592 | 
            +
                  "rstrip": false,
         | 
| 2593 | 
            +
                  "single_word": false,
         | 
| 2594 | 
            +
                  "special": true
         | 
| 2595 | 
            +
                },
         | 
| 2596 | 
            +
                "324": {
         | 
| 2597 | 
            +
                  "content": "[extra_id_162]",
         | 
| 2598 | 
            +
                  "lstrip": false,
         | 
| 2599 | 
            +
                  "normalized": false,
         | 
| 2600 | 
            +
                  "rstrip": false,
         | 
| 2601 | 
            +
                  "single_word": false,
         | 
| 2602 | 
            +
                  "special": true
         | 
| 2603 | 
            +
                },
         | 
| 2604 | 
            +
                "325": {
         | 
| 2605 | 
            +
                  "content": "[extra_id_163]",
         | 
| 2606 | 
            +
                  "lstrip": false,
         | 
| 2607 | 
            +
                  "normalized": false,
         | 
| 2608 | 
            +
                  "rstrip": false,
         | 
| 2609 | 
            +
                  "single_word": false,
         | 
| 2610 | 
            +
                  "special": true
         | 
| 2611 | 
            +
                },
         | 
| 2612 | 
            +
                "326": {
         | 
| 2613 | 
            +
                  "content": "[extra_id_164]",
         | 
| 2614 | 
            +
                  "lstrip": false,
         | 
| 2615 | 
            +
                  "normalized": false,
         | 
| 2616 | 
            +
                  "rstrip": false,
         | 
| 2617 | 
            +
                  "single_word": false,
         | 
| 2618 | 
            +
                  "special": true
         | 
| 2619 | 
            +
                },
         | 
| 2620 | 
            +
                "327": {
         | 
| 2621 | 
            +
                  "content": "[extra_id_165]",
         | 
| 2622 | 
            +
                  "lstrip": false,
         | 
| 2623 | 
            +
                  "normalized": false,
         | 
| 2624 | 
            +
                  "rstrip": false,
         | 
| 2625 | 
            +
                  "single_word": false,
         | 
| 2626 | 
            +
                  "special": true
         | 
| 2627 | 
            +
                },
         | 
| 2628 | 
            +
                "328": {
         | 
| 2629 | 
            +
                  "content": "[extra_id_166]",
         | 
| 2630 | 
            +
                  "lstrip": false,
         | 
| 2631 | 
            +
                  "normalized": false,
         | 
| 2632 | 
            +
                  "rstrip": false,
         | 
| 2633 | 
            +
                  "single_word": false,
         | 
| 2634 | 
            +
                  "special": true
         | 
| 2635 | 
            +
                },
         | 
| 2636 | 
            +
                "329": {
         | 
| 2637 | 
            +
                  "content": "[extra_id_167]",
         | 
| 2638 | 
            +
                  "lstrip": false,
         | 
| 2639 | 
            +
                  "normalized": false,
         | 
| 2640 | 
            +
                  "rstrip": false,
         | 
| 2641 | 
            +
                  "single_word": false,
         | 
| 2642 | 
            +
                  "special": true
         | 
| 2643 | 
            +
                },
         | 
| 2644 | 
            +
                "330": {
         | 
| 2645 | 
            +
                  "content": "[extra_id_168]",
         | 
| 2646 | 
            +
                  "lstrip": false,
         | 
| 2647 | 
            +
                  "normalized": false,
         | 
| 2648 | 
            +
                  "rstrip": false,
         | 
| 2649 | 
            +
                  "single_word": false,
         | 
| 2650 | 
            +
                  "special": true
         | 
| 2651 | 
            +
                },
         | 
| 2652 | 
            +
                "331": {
         | 
| 2653 | 
            +
                  "content": "[extra_id_169]",
         | 
| 2654 | 
            +
                  "lstrip": false,
         | 
| 2655 | 
            +
                  "normalized": false,
         | 
| 2656 | 
            +
                  "rstrip": false,
         | 
| 2657 | 
            +
                  "single_word": false,
         | 
| 2658 | 
            +
                  "special": true
         | 
| 2659 | 
            +
                },
         | 
| 2660 | 
            +
                "332": {
         | 
| 2661 | 
            +
                  "content": "[extra_id_170]",
         | 
| 2662 | 
            +
                  "lstrip": false,
         | 
| 2663 | 
            +
                  "normalized": false,
         | 
| 2664 | 
            +
                  "rstrip": false,
         | 
| 2665 | 
            +
                  "single_word": false,
         | 
| 2666 | 
            +
                  "special": true
         | 
| 2667 | 
            +
                },
         | 
| 2668 | 
            +
                "333": {
         | 
| 2669 | 
            +
                  "content": "[extra_id_171]",
         | 
| 2670 | 
            +
                  "lstrip": false,
         | 
| 2671 | 
            +
                  "normalized": false,
         | 
| 2672 | 
            +
                  "rstrip": false,
         | 
| 2673 | 
            +
                  "single_word": false,
         | 
| 2674 | 
            +
                  "special": true
         | 
| 2675 | 
            +
                },
         | 
| 2676 | 
            +
                "334": {
         | 
| 2677 | 
            +
                  "content": "[extra_id_172]",
         | 
| 2678 | 
            +
                  "lstrip": false,
         | 
| 2679 | 
            +
                  "normalized": false,
         | 
| 2680 | 
            +
                  "rstrip": false,
         | 
| 2681 | 
            +
                  "single_word": false,
         | 
| 2682 | 
            +
                  "special": true
         | 
| 2683 | 
            +
                },
         | 
| 2684 | 
            +
                "335": {
         | 
| 2685 | 
            +
                  "content": "[extra_id_173]",
         | 
| 2686 | 
            +
                  "lstrip": false,
         | 
| 2687 | 
            +
                  "normalized": false,
         | 
| 2688 | 
            +
                  "rstrip": false,
         | 
| 2689 | 
            +
                  "single_word": false,
         | 
| 2690 | 
            +
                  "special": true
         | 
| 2691 | 
            +
                },
         | 
| 2692 | 
            +
                "336": {
         | 
| 2693 | 
            +
                  "content": "[extra_id_174]",
         | 
| 2694 | 
            +
                  "lstrip": false,
         | 
| 2695 | 
            +
                  "normalized": false,
         | 
| 2696 | 
            +
                  "rstrip": false,
         | 
| 2697 | 
            +
                  "single_word": false,
         | 
| 2698 | 
            +
                  "special": true
         | 
| 2699 | 
            +
                },
         | 
| 2700 | 
            +
                "337": {
         | 
| 2701 | 
            +
                  "content": "[extra_id_175]",
         | 
| 2702 | 
            +
                  "lstrip": false,
         | 
| 2703 | 
            +
                  "normalized": false,
         | 
| 2704 | 
            +
                  "rstrip": false,
         | 
| 2705 | 
            +
                  "single_word": false,
         | 
| 2706 | 
            +
                  "special": true
         | 
| 2707 | 
            +
                },
         | 
| 2708 | 
            +
                "338": {
         | 
| 2709 | 
            +
                  "content": "[extra_id_176]",
         | 
| 2710 | 
            +
                  "lstrip": false,
         | 
| 2711 | 
            +
                  "normalized": false,
         | 
| 2712 | 
            +
                  "rstrip": false,
         | 
| 2713 | 
            +
                  "single_word": false,
         | 
| 2714 | 
            +
                  "special": true
         | 
| 2715 | 
            +
                },
         | 
| 2716 | 
            +
                "339": {
         | 
| 2717 | 
            +
                  "content": "[extra_id_177]",
         | 
| 2718 | 
            +
                  "lstrip": false,
         | 
| 2719 | 
            +
                  "normalized": false,
         | 
| 2720 | 
            +
                  "rstrip": false,
         | 
| 2721 | 
            +
                  "single_word": false,
         | 
| 2722 | 
            +
                  "special": true
         | 
| 2723 | 
            +
                },
         | 
| 2724 | 
            +
                "340": {
         | 
| 2725 | 
            +
                  "content": "[extra_id_178]",
         | 
| 2726 | 
            +
                  "lstrip": false,
         | 
| 2727 | 
            +
                  "normalized": false,
         | 
| 2728 | 
            +
                  "rstrip": false,
         | 
| 2729 | 
            +
                  "single_word": false,
         | 
| 2730 | 
            +
                  "special": true
         | 
| 2731 | 
            +
                },
         | 
| 2732 | 
            +
                "341": {
         | 
| 2733 | 
            +
                  "content": "[extra_id_179]",
         | 
| 2734 | 
            +
                  "lstrip": false,
         | 
| 2735 | 
            +
                  "normalized": false,
         | 
| 2736 | 
            +
                  "rstrip": false,
         | 
| 2737 | 
            +
                  "single_word": false,
         | 
| 2738 | 
            +
                  "special": true
         | 
| 2739 | 
            +
                },
         | 
| 2740 | 
            +
                "342": {
         | 
| 2741 | 
            +
                  "content": "[extra_id_180]",
         | 
| 2742 | 
            +
                  "lstrip": false,
         | 
| 2743 | 
            +
                  "normalized": false,
         | 
| 2744 | 
            +
                  "rstrip": false,
         | 
| 2745 | 
            +
                  "single_word": false,
         | 
| 2746 | 
            +
                  "special": true
         | 
| 2747 | 
            +
                },
         | 
| 2748 | 
            +
                "343": {
         | 
| 2749 | 
            +
                  "content": "[extra_id_181]",
         | 
| 2750 | 
            +
                  "lstrip": false,
         | 
| 2751 | 
            +
                  "normalized": false,
         | 
| 2752 | 
            +
                  "rstrip": false,
         | 
| 2753 | 
            +
                  "single_word": false,
         | 
| 2754 | 
            +
                  "special": true
         | 
| 2755 | 
            +
                },
         | 
| 2756 | 
            +
                "344": {
         | 
| 2757 | 
            +
                  "content": "[extra_id_182]",
         | 
| 2758 | 
            +
                  "lstrip": false,
         | 
| 2759 | 
            +
                  "normalized": false,
         | 
| 2760 | 
            +
                  "rstrip": false,
         | 
| 2761 | 
            +
                  "single_word": false,
         | 
| 2762 | 
            +
                  "special": true
         | 
| 2763 | 
            +
                },
         | 
| 2764 | 
            +
                "345": {
         | 
| 2765 | 
            +
                  "content": "[extra_id_183]",
         | 
| 2766 | 
            +
                  "lstrip": false,
         | 
| 2767 | 
            +
                  "normalized": false,
         | 
| 2768 | 
            +
                  "rstrip": false,
         | 
| 2769 | 
            +
                  "single_word": false,
         | 
| 2770 | 
            +
                  "special": true
         | 
| 2771 | 
            +
                },
         | 
| 2772 | 
            +
                "346": {
         | 
| 2773 | 
            +
                  "content": "[extra_id_184]",
         | 
| 2774 | 
            +
                  "lstrip": false,
         | 
| 2775 | 
            +
                  "normalized": false,
         | 
| 2776 | 
            +
                  "rstrip": false,
         | 
| 2777 | 
            +
                  "single_word": false,
         | 
| 2778 | 
            +
                  "special": true
         | 
| 2779 | 
            +
                },
         | 
| 2780 | 
            +
                "347": {
         | 
| 2781 | 
            +
                  "content": "[extra_id_185]",
         | 
| 2782 | 
            +
                  "lstrip": false,
         | 
| 2783 | 
            +
                  "normalized": false,
         | 
| 2784 | 
            +
                  "rstrip": false,
         | 
| 2785 | 
            +
                  "single_word": false,
         | 
| 2786 | 
            +
                  "special": true
         | 
| 2787 | 
            +
                },
         | 
| 2788 | 
            +
                "348": {
         | 
| 2789 | 
            +
                  "content": "[extra_id_186]",
         | 
| 2790 | 
            +
                  "lstrip": false,
         | 
| 2791 | 
            +
                  "normalized": false,
         | 
| 2792 | 
            +
                  "rstrip": false,
         | 
| 2793 | 
            +
                  "single_word": false,
         | 
| 2794 | 
            +
                  "special": true
         | 
| 2795 | 
            +
                },
         | 
| 2796 | 
            +
                "349": {
         | 
| 2797 | 
            +
                  "content": "[extra_id_187]",
         | 
| 2798 | 
            +
                  "lstrip": false,
         | 
| 2799 | 
            +
                  "normalized": false,
         | 
| 2800 | 
            +
                  "rstrip": false,
         | 
| 2801 | 
            +
                  "single_word": false,
         | 
| 2802 | 
            +
                  "special": true
         | 
| 2803 | 
            +
                },
         | 
| 2804 | 
            +
                "350": {
         | 
| 2805 | 
            +
                  "content": "[extra_id_188]",
         | 
| 2806 | 
            +
                  "lstrip": false,
         | 
| 2807 | 
            +
                  "normalized": false,
         | 
| 2808 | 
            +
                  "rstrip": false,
         | 
| 2809 | 
            +
                  "single_word": false,
         | 
| 2810 | 
            +
                  "special": true
         | 
| 2811 | 
            +
                },
         | 
| 2812 | 
            +
                "351": {
         | 
| 2813 | 
            +
                  "content": "[extra_id_189]",
         | 
| 2814 | 
            +
                  "lstrip": false,
         | 
| 2815 | 
            +
                  "normalized": false,
         | 
| 2816 | 
            +
                  "rstrip": false,
         | 
| 2817 | 
            +
                  "single_word": false,
         | 
| 2818 | 
            +
                  "special": true
         | 
| 2819 | 
            +
                },
         | 
| 2820 | 
            +
                "352": {
         | 
| 2821 | 
            +
                  "content": "[extra_id_190]",
         | 
| 2822 | 
            +
                  "lstrip": false,
         | 
| 2823 | 
            +
                  "normalized": false,
         | 
| 2824 | 
            +
                  "rstrip": false,
         | 
| 2825 | 
            +
                  "single_word": false,
         | 
| 2826 | 
            +
                  "special": true
         | 
| 2827 | 
            +
                },
         | 
| 2828 | 
            +
                "353": {
         | 
| 2829 | 
            +
                  "content": "[extra_id_191]",
         | 
| 2830 | 
            +
                  "lstrip": false,
         | 
| 2831 | 
            +
                  "normalized": false,
         | 
| 2832 | 
            +
                  "rstrip": false,
         | 
| 2833 | 
            +
                  "single_word": false,
         | 
| 2834 | 
            +
                  "special": true
         | 
| 2835 | 
            +
                },
         | 
| 2836 | 
            +
                "354": {
         | 
| 2837 | 
            +
                  "content": "[extra_id_192]",
         | 
| 2838 | 
            +
                  "lstrip": false,
         | 
| 2839 | 
            +
                  "normalized": false,
         | 
| 2840 | 
            +
                  "rstrip": false,
         | 
| 2841 | 
            +
                  "single_word": false,
         | 
| 2842 | 
            +
                  "special": true
         | 
| 2843 | 
            +
                },
         | 
| 2844 | 
            +
                "355": {
         | 
| 2845 | 
            +
                  "content": "[extra_id_193]",
         | 
| 2846 | 
            +
                  "lstrip": false,
         | 
| 2847 | 
            +
                  "normalized": false,
         | 
| 2848 | 
            +
                  "rstrip": false,
         | 
| 2849 | 
            +
                  "single_word": false,
         | 
| 2850 | 
            +
                  "special": true
         | 
| 2851 | 
            +
                },
         | 
| 2852 | 
            +
                "356": {
         | 
| 2853 | 
            +
                  "content": "[extra_id_194]",
         | 
| 2854 | 
            +
                  "lstrip": false,
         | 
| 2855 | 
            +
                  "normalized": false,
         | 
| 2856 | 
            +
                  "rstrip": false,
         | 
| 2857 | 
            +
                  "single_word": false,
         | 
| 2858 | 
            +
                  "special": true
         | 
| 2859 | 
            +
                },
         | 
| 2860 | 
            +
                "357": {
         | 
| 2861 | 
            +
                  "content": "[extra_id_195]",
         | 
| 2862 | 
            +
                  "lstrip": false,
         | 
| 2863 | 
            +
                  "normalized": false,
         | 
| 2864 | 
            +
                  "rstrip": false,
         | 
| 2865 | 
            +
                  "single_word": false,
         | 
| 2866 | 
            +
                  "special": true
         | 
| 2867 | 
            +
                },
         | 
| 2868 | 
            +
                "358": {
         | 
| 2869 | 
            +
                  "content": "[extra_id_196]",
         | 
| 2870 | 
            +
                  "lstrip": false,
         | 
| 2871 | 
            +
                  "normalized": false,
         | 
| 2872 | 
            +
                  "rstrip": false,
         | 
| 2873 | 
            +
                  "single_word": false,
         | 
| 2874 | 
            +
                  "special": true
         | 
| 2875 | 
            +
                },
         | 
| 2876 | 
            +
                "359": {
         | 
| 2877 | 
            +
                  "content": "[extra_id_197]",
         | 
| 2878 | 
            +
                  "lstrip": false,
         | 
| 2879 | 
            +
                  "normalized": false,
         | 
| 2880 | 
            +
                  "rstrip": false,
         | 
| 2881 | 
            +
                  "single_word": false,
         | 
| 2882 | 
            +
                  "special": true
         | 
| 2883 | 
            +
                },
         | 
| 2884 | 
            +
                "360": {
         | 
| 2885 | 
            +
                  "content": "[extra_id_198]",
         | 
| 2886 | 
            +
                  "lstrip": false,
         | 
| 2887 | 
            +
                  "normalized": false,
         | 
| 2888 | 
            +
                  "rstrip": false,
         | 
| 2889 | 
            +
                  "single_word": false,
         | 
| 2890 | 
            +
                  "special": true
         | 
| 2891 | 
            +
                },
         | 
| 2892 | 
            +
                "361": {
         | 
| 2893 | 
            +
                  "content": "[|endofturn|]",
         | 
| 2894 | 
            +
                  "lstrip": false,
         | 
| 2895 | 
            +
                  "normalized": false,
         | 
| 2896 | 
            +
                  "rstrip": false,
         | 
| 2897 | 
            +
                  "single_word": false,
         | 
| 2898 | 
            +
                  "special": true
         | 
| 2899 | 
            +
                }
         | 
| 2900 | 
            +
              },
         | 
| 2901 | 
            +
              "additional_special_token": [
         | 
| 2902 | 
            +
                "[unused0]",
         | 
| 2903 | 
            +
                "[unused1]",
         | 
| 2904 | 
            +
                "[unused2]",
         | 
| 2905 | 
            +
                "[unused3]",
         | 
| 2906 | 
            +
                "[unused4]",
         | 
| 2907 | 
            +
                "[unused5]",
         | 
| 2908 | 
            +
                "[unused6]",
         | 
| 2909 | 
            +
                "[unused7]",
         | 
| 2910 | 
            +
                "[unused8]",
         | 
| 2911 | 
            +
                "[unused9]",
         | 
| 2912 | 
            +
                "[unused10]",
         | 
| 2913 | 
            +
                "[unused11]",
         | 
| 2914 | 
            +
                "[unused12]",
         | 
| 2915 | 
            +
                "[unused13]",
         | 
| 2916 | 
            +
                "[unused14]",
         | 
| 2917 | 
            +
                "[unused15]",
         | 
| 2918 | 
            +
                "[unused16]",
         | 
| 2919 | 
            +
                "[unused17]",
         | 
| 2920 | 
            +
                "[unused18]",
         | 
| 2921 | 
            +
                "[unused19]",
         | 
| 2922 | 
            +
                "[unused20]",
         | 
| 2923 | 
            +
                "[unused21]",
         | 
| 2924 | 
            +
                "[unused22]",
         | 
| 2925 | 
            +
                "[unused23]",
         | 
| 2926 | 
            +
                "[unused24]",
         | 
| 2927 | 
            +
                "[unused25]",
         | 
| 2928 | 
            +
                "[unused26]",
         | 
| 2929 | 
            +
                "[unused27]",
         | 
| 2930 | 
            +
                "[unused28]",
         | 
| 2931 | 
            +
                "[unused29]",
         | 
| 2932 | 
            +
                "[unused30]",
         | 
| 2933 | 
            +
                "[unused31]",
         | 
| 2934 | 
            +
                "[unused32]",
         | 
| 2935 | 
            +
                "[unused33]",
         | 
| 2936 | 
            +
                "[unused34]",
         | 
| 2937 | 
            +
                "[unused35]",
         | 
| 2938 | 
            +
                "[unused36]",
         | 
| 2939 | 
            +
                "[unused37]",
         | 
| 2940 | 
            +
                "[unused38]",
         | 
| 2941 | 
            +
                "[unused39]",
         | 
| 2942 | 
            +
                "[unused40]",
         | 
| 2943 | 
            +
                "[unused41]",
         | 
| 2944 | 
            +
                "[unused42]",
         | 
| 2945 | 
            +
                "[unused43]",
         | 
| 2946 | 
            +
                "[unused44]",
         | 
| 2947 | 
            +
                "[unused45]",
         | 
| 2948 | 
            +
                "[unused46]",
         | 
| 2949 | 
            +
                "[unused47]",
         | 
| 2950 | 
            +
                "[unused48]",
         | 
| 2951 | 
            +
                "[unused49]",
         | 
| 2952 | 
            +
                "[unused50]",
         | 
| 2953 | 
            +
                "[unused51]",
         | 
| 2954 | 
            +
                "[unused52]",
         | 
| 2955 | 
            +
                "[unused53]",
         | 
| 2956 | 
            +
                "[unused54]",
         | 
| 2957 | 
            +
                "[unused55]",
         | 
| 2958 | 
            +
                "[unused56]",
         | 
| 2959 | 
            +
                "[unused57]",
         | 
| 2960 | 
            +
                "[unused58]",
         | 
| 2961 | 
            +
                "[unused59]",
         | 
| 2962 | 
            +
                "[unused60]",
         | 
| 2963 | 
            +
                "[unused61]",
         | 
| 2964 | 
            +
                "[unused62]",
         | 
| 2965 | 
            +
                "[unused63]",
         | 
| 2966 | 
            +
                "[unused64]",
         | 
| 2967 | 
            +
                "[unused65]",
         | 
| 2968 | 
            +
                "[unused66]",
         | 
| 2969 | 
            +
                "[unused67]",
         | 
| 2970 | 
            +
                "[unused68]",
         | 
| 2971 | 
            +
                "[unused69]",
         | 
| 2972 | 
            +
                "[unused70]",
         | 
| 2973 | 
            +
                "[unused71]",
         | 
| 2974 | 
            +
                "[unused72]",
         | 
| 2975 | 
            +
                "[unused73]",
         | 
| 2976 | 
            +
                "[unused74]",
         | 
| 2977 | 
            +
                "[unused75]",
         | 
| 2978 | 
            +
                "[unused76]",
         | 
| 2979 | 
            +
                "[unused77]",
         | 
| 2980 | 
            +
                "[unused78]",
         | 
| 2981 | 
            +
                "[unused79]",
         | 
| 2982 | 
            +
                "[unused80]",
         | 
| 2983 | 
            +
                "[unused81]",
         | 
| 2984 | 
            +
                "[unused82]",
         | 
| 2985 | 
            +
                "[unused83]",
         | 
| 2986 | 
            +
                "[unused84]",
         | 
| 2987 | 
            +
                "[unused85]",
         | 
| 2988 | 
            +
                "[unused86]",
         | 
| 2989 | 
            +
                "[unused87]",
         | 
| 2990 | 
            +
                "[unused88]",
         | 
| 2991 | 
            +
                "[unused89]",
         | 
| 2992 | 
            +
                "[unused90]",
         | 
| 2993 | 
            +
                "[unused91]",
         | 
| 2994 | 
            +
                "[unused92]",
         | 
| 2995 | 
            +
                "[unused93]",
         | 
| 2996 | 
            +
                "[unused94]",
         | 
| 2997 | 
            +
                "[unused95]",
         | 
| 2998 | 
            +
                "[unused96]",
         | 
| 2999 | 
            +
                "[unused97]",
         | 
| 3000 | 
            +
                "[unused98]",
         | 
| 3001 | 
            +
                "[unused99]",
         | 
| 3002 | 
            +
                "[extra_id_0]",
         | 
| 3003 | 
            +
                "[extra_id_1]",
         | 
| 3004 | 
            +
                "[extra_id_2]",
         | 
| 3005 | 
            +
                "[extra_id_3]",
         | 
| 3006 | 
            +
                "[extra_id_4]",
         | 
| 3007 | 
            +
                "[extra_id_5]",
         | 
| 3008 | 
            +
                "[extra_id_6]",
         | 
| 3009 | 
            +
                "[extra_id_7]",
         | 
| 3010 | 
            +
                "[extra_id_8]",
         | 
| 3011 | 
            +
                "[extra_id_9]",
         | 
| 3012 | 
            +
                "[extra_id_10]",
         | 
| 3013 | 
            +
                "[extra_id_11]",
         | 
| 3014 | 
            +
                "[extra_id_12]",
         | 
| 3015 | 
            +
                "[extra_id_13]",
         | 
| 3016 | 
            +
                "[extra_id_14]",
         | 
| 3017 | 
            +
                "[extra_id_15]",
         | 
| 3018 | 
            +
                "[extra_id_16]",
         | 
| 3019 | 
            +
                "[extra_id_17]",
         | 
| 3020 | 
            +
                "[extra_id_18]",
         | 
| 3021 | 
            +
                "[extra_id_19]",
         | 
| 3022 | 
            +
                "[extra_id_20]",
         | 
| 3023 | 
            +
                "[extra_id_21]",
         | 
| 3024 | 
            +
                "[extra_id_22]",
         | 
| 3025 | 
            +
                "[extra_id_23]",
         | 
| 3026 | 
            +
                "[extra_id_24]",
         | 
| 3027 | 
            +
                "[extra_id_25]",
         | 
| 3028 | 
            +
                "[extra_id_26]",
         | 
| 3029 | 
            +
                "[extra_id_27]",
         | 
| 3030 | 
            +
                "[extra_id_28]",
         | 
| 3031 | 
            +
                "[extra_id_29]",
         | 
| 3032 | 
            +
                "[extra_id_30]",
         | 
| 3033 | 
            +
                "[extra_id_31]",
         | 
| 3034 | 
            +
                "[extra_id_32]",
         | 
| 3035 | 
            +
                "[extra_id_33]",
         | 
| 3036 | 
            +
                "[extra_id_34]",
         | 
| 3037 | 
            +
                "[extra_id_35]",
         | 
| 3038 | 
            +
                "[extra_id_36]",
         | 
| 3039 | 
            +
                "[extra_id_37]",
         | 
| 3040 | 
            +
                "[extra_id_38]",
         | 
| 3041 | 
            +
                "[extra_id_39]",
         | 
| 3042 | 
            +
                "[extra_id_40]",
         | 
| 3043 | 
            +
                "[extra_id_41]",
         | 
| 3044 | 
            +
                "[extra_id_42]",
         | 
| 3045 | 
            +
                "[extra_id_43]",
         | 
| 3046 | 
            +
                "[extra_id_44]",
         | 
| 3047 | 
            +
                "[extra_id_45]",
         | 
| 3048 | 
            +
                "[extra_id_46]",
         | 
| 3049 | 
            +
                "[extra_id_47]",
         | 
| 3050 | 
            +
                "[extra_id_48]",
         | 
| 3051 | 
            +
                "[extra_id_49]",
         | 
| 3052 | 
            +
                "[extra_id_50]",
         | 
| 3053 | 
            +
                "[extra_id_51]",
         | 
| 3054 | 
            +
                "[extra_id_52]",
         | 
| 3055 | 
            +
                "[extra_id_53]",
         | 
| 3056 | 
            +
                "[extra_id_54]",
         | 
| 3057 | 
            +
                "[extra_id_55]",
         | 
| 3058 | 
            +
                "[extra_id_56]",
         | 
| 3059 | 
            +
                "[extra_id_57]",
         | 
| 3060 | 
            +
                "[extra_id_58]",
         | 
| 3061 | 
            +
                "[extra_id_59]",
         | 
| 3062 | 
            +
                "[extra_id_60]",
         | 
| 3063 | 
            +
                "[extra_id_61]",
         | 
| 3064 | 
            +
                "[extra_id_62]",
         | 
| 3065 | 
            +
                "[extra_id_63]",
         | 
| 3066 | 
            +
                "[extra_id_64]",
         | 
| 3067 | 
            +
                "[extra_id_65]",
         | 
| 3068 | 
            +
                "[extra_id_66]",
         | 
| 3069 | 
            +
                "[extra_id_67]",
         | 
| 3070 | 
            +
                "[extra_id_68]",
         | 
| 3071 | 
            +
                "[extra_id_69]",
         | 
| 3072 | 
            +
                "[extra_id_70]",
         | 
| 3073 | 
            +
                "[extra_id_71]",
         | 
| 3074 | 
            +
                "[extra_id_72]",
         | 
| 3075 | 
            +
                "[extra_id_73]",
         | 
| 3076 | 
            +
                "[extra_id_74]",
         | 
| 3077 | 
            +
                "[extra_id_75]",
         | 
| 3078 | 
            +
                "[extra_id_76]",
         | 
| 3079 | 
            +
                "[extra_id_77]",
         | 
| 3080 | 
            +
                "[extra_id_78]",
         | 
| 3081 | 
            +
                "[extra_id_79]",
         | 
| 3082 | 
            +
                "[extra_id_80]",
         | 
| 3083 | 
            +
                "[extra_id_81]",
         | 
| 3084 | 
            +
                "[extra_id_82]",
         | 
| 3085 | 
            +
                "[extra_id_83]",
         | 
| 3086 | 
            +
                "[extra_id_84]",
         | 
| 3087 | 
            +
                "[extra_id_85]",
         | 
| 3088 | 
            +
                "[extra_id_86]",
         | 
| 3089 | 
            +
                "[extra_id_87]",
         | 
| 3090 | 
            +
                "[extra_id_88]",
         | 
| 3091 | 
            +
                "[extra_id_89]",
         | 
| 3092 | 
            +
                "[extra_id_90]",
         | 
| 3093 | 
            +
                "[extra_id_91]",
         | 
| 3094 | 
            +
                "[extra_id_92]",
         | 
| 3095 | 
            +
                "[extra_id_93]",
         | 
| 3096 | 
            +
                "[extra_id_94]",
         | 
| 3097 | 
            +
                "[extra_id_95]",
         | 
| 3098 | 
            +
                "[extra_id_96]",
         | 
| 3099 | 
            +
                "[extra_id_97]",
         | 
| 3100 | 
            +
                "[extra_id_98]",
         | 
| 3101 | 
            +
                "[extra_id_99]",
         | 
| 3102 | 
            +
                "[extra_id_100]",
         | 
| 3103 | 
            +
                "[extra_id_101]",
         | 
| 3104 | 
            +
                "[extra_id_102]",
         | 
| 3105 | 
            +
                "[extra_id_103]",
         | 
| 3106 | 
            +
                "[extra_id_104]",
         | 
| 3107 | 
            +
                "[extra_id_105]",
         | 
| 3108 | 
            +
                "[extra_id_106]",
         | 
| 3109 | 
            +
                "[extra_id_107]",
         | 
| 3110 | 
            +
                "[extra_id_108]",
         | 
| 3111 | 
            +
                "[extra_id_109]",
         | 
| 3112 | 
            +
                "[extra_id_110]",
         | 
| 3113 | 
            +
                "[extra_id_111]",
         | 
| 3114 | 
            +
                "[extra_id_112]",
         | 
| 3115 | 
            +
                "[extra_id_113]",
         | 
| 3116 | 
            +
                "[extra_id_114]",
         | 
| 3117 | 
            +
                "[extra_id_115]",
         | 
| 3118 | 
            +
                "[extra_id_116]",
         | 
| 3119 | 
            +
                "[extra_id_117]",
         | 
| 3120 | 
            +
                "[extra_id_118]",
         | 
| 3121 | 
            +
                "[extra_id_119]",
         | 
| 3122 | 
            +
                "[extra_id_120]",
         | 
| 3123 | 
            +
                "[extra_id_121]",
         | 
| 3124 | 
            +
                "[extra_id_122]",
         | 
| 3125 | 
            +
                "[extra_id_123]",
         | 
| 3126 | 
            +
                "[extra_id_124]",
         | 
| 3127 | 
            +
                "[extra_id_125]",
         | 
| 3128 | 
            +
                "[extra_id_126]",
         | 
| 3129 | 
            +
                "[extra_id_127]",
         | 
| 3130 | 
            +
                "[extra_id_128]",
         | 
| 3131 | 
            +
                "[extra_id_129]",
         | 
| 3132 | 
            +
                "[extra_id_130]",
         | 
| 3133 | 
            +
                "[extra_id_131]",
         | 
| 3134 | 
            +
                "[extra_id_132]",
         | 
| 3135 | 
            +
                "[extra_id_133]",
         | 
| 3136 | 
            +
                "[extra_id_134]",
         | 
| 3137 | 
            +
                "[extra_id_135]",
         | 
| 3138 | 
            +
                "[extra_id_136]",
         | 
| 3139 | 
            +
                "[extra_id_137]",
         | 
| 3140 | 
            +
                "[extra_id_138]",
         | 
| 3141 | 
            +
                "[extra_id_139]",
         | 
| 3142 | 
            +
                "[extra_id_140]",
         | 
| 3143 | 
            +
                "[extra_id_141]",
         | 
| 3144 | 
            +
                "[extra_id_142]",
         | 
| 3145 | 
            +
                "[extra_id_143]",
         | 
| 3146 | 
            +
                "[extra_id_144]",
         | 
| 3147 | 
            +
                "[extra_id_145]",
         | 
| 3148 | 
            +
                "[extra_id_146]",
         | 
| 3149 | 
            +
                "[extra_id_147]",
         | 
| 3150 | 
            +
                "[extra_id_148]",
         | 
| 3151 | 
            +
                "[extra_id_149]",
         | 
| 3152 | 
            +
                "[extra_id_150]",
         | 
| 3153 | 
            +
                "[extra_id_151]",
         | 
| 3154 | 
            +
                "[extra_id_152]",
         | 
| 3155 | 
            +
                "[extra_id_153]",
         | 
| 3156 | 
            +
                "[extra_id_154]",
         | 
| 3157 | 
            +
                "[extra_id_155]",
         | 
| 3158 | 
            +
                "[extra_id_156]",
         | 
| 3159 | 
            +
                "[extra_id_157]",
         | 
| 3160 | 
            +
                "[extra_id_158]",
         | 
| 3161 | 
            +
                "[extra_id_159]",
         | 
| 3162 | 
            +
                "[extra_id_160]",
         | 
| 3163 | 
            +
                "[extra_id_161]",
         | 
| 3164 | 
            +
                "[extra_id_162]",
         | 
| 3165 | 
            +
                "[extra_id_163]",
         | 
| 3166 | 
            +
                "[extra_id_164]",
         | 
| 3167 | 
            +
                "[extra_id_165]",
         | 
| 3168 | 
            +
                "[extra_id_166]",
         | 
| 3169 | 
            +
                "[extra_id_167]",
         | 
| 3170 | 
            +
                "[extra_id_168]",
         | 
| 3171 | 
            +
                "[extra_id_169]",
         | 
| 3172 | 
            +
                "[extra_id_170]",
         | 
| 3173 | 
            +
                "[extra_id_171]",
         | 
| 3174 | 
            +
                "[extra_id_172]",
         | 
| 3175 | 
            +
                "[extra_id_173]",
         | 
| 3176 | 
            +
                "[extra_id_174]",
         | 
| 3177 | 
            +
                "[extra_id_175]",
         | 
| 3178 | 
            +
                "[extra_id_176]",
         | 
| 3179 | 
            +
                "[extra_id_177]",
         | 
| 3180 | 
            +
                "[extra_id_178]",
         | 
| 3181 | 
            +
                "[extra_id_179]",
         | 
| 3182 | 
            +
                "[extra_id_180]",
         | 
| 3183 | 
            +
                "[extra_id_181]",
         | 
| 3184 | 
            +
                "[extra_id_182]",
         | 
| 3185 | 
            +
                "[extra_id_183]",
         | 
| 3186 | 
            +
                "[extra_id_184]",
         | 
| 3187 | 
            +
                "[extra_id_185]",
         | 
| 3188 | 
            +
                "[extra_id_186]",
         | 
| 3189 | 
            +
                "[extra_id_187]",
         | 
| 3190 | 
            +
                "[extra_id_188]",
         | 
| 3191 | 
            +
                "[extra_id_189]",
         | 
| 3192 | 
            +
                "[extra_id_190]",
         | 
| 3193 | 
            +
                "[extra_id_191]",
         | 
| 3194 | 
            +
                "[extra_id_192]",
         | 
| 3195 | 
            +
                "[extra_id_193]",
         | 
| 3196 | 
            +
                "[extra_id_194]",
         | 
| 3197 | 
            +
                "[extra_id_195]",
         | 
| 3198 | 
            +
                "[extra_id_196]",
         | 
| 3199 | 
            +
                "[extra_id_197]",
         | 
| 3200 | 
            +
                "[extra_id_198]",
         | 
| 3201 | 
            +
                "[|endofturn|]",
         | 
| 3202 | 
            +
                "PI:URL",
         | 
| 3203 | 
            +
                "PI:EMAIL",
         | 
| 3204 | 
            +
                "PI:ACCOUNT_NUM",
         | 
| 3205 | 
            +
                "PI:PHONE_NUM",
         | 
| 3206 | 
            +
                "PI:BUSINESS_NUM",
         | 
| 3207 | 
            +
                "PI:ANNON",
         | 
| 3208 | 
            +
                "PI:KEY",
         | 
| 3209 | 
            +
                "PI:ID",
         | 
| 3210 | 
            +
                "PI:IP_ADDRESS",
         | 
| 3211 | 
            +
                "PI:USER"
         | 
| 3212 | 
            +
              ],
         | 
| 3213 | 
            +
              "bos_token": "[BOS]",
         | 
| 3214 | 
            +
              "chat_template": "{% for message in messages %}{% if loop.first and message['role'] != 'system' %}{{ '[|system|][|endofturn|]\\n' }}{% endif %}{% set content = message['content'] %}{% if '</thought>' in content %}{% set content = content.split('</thought>')[-1].lstrip('\\n') %}{% endif %}{{ '[|' + message['role'] + '|]' + content }}{% if not message['role'] == 'user' %}{{ '[|endofturn|]' }}{% endif %}{% if not loop.last %}{{ '\\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '\\n[|assistant|]<thought>\\n' }}{% endif %}",
         | 
| 3215 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 3216 | 
            +
              "eos_token": "[|endofturn|]",
         | 
| 3217 | 
            +
              "extra_special_tokens": {},
         | 
| 3218 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 3219 | 
            +
              "pad_token": "[PAD]",
         | 
| 3220 | 
            +
              "tokenizer_class": "GPT2Tokenizer",
         | 
| 3221 | 
            +
              "unk_token": "[UNK]"
         | 
| 3222 | 
            +
            }
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
