Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, make_response
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
app = Flask(__name__)
|
| 7 |
+
|
| 8 |
+
# Global variables to store model and tokenizer
|
| 9 |
+
global_tokenizer = None
|
| 10 |
+
global_model = None
|
| 11 |
+
|
| 12 |
+
def load_model():
|
| 13 |
+
"""Load the model and tokenizer"""
|
| 14 |
+
global global_tokenizer, global_model
|
| 15 |
+
try:
|
| 16 |
+
print("Loading model and tokenizer...")
|
| 17 |
+
MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 18 |
+
global_tokenizer = DistilBertTokenizer.from_pretrained(MODEL_NAME)
|
| 19 |
+
global_model = DistilBertForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 20 |
+
global_model.eval()
|
| 21 |
+
print("Model loaded successfully!")
|
| 22 |
+
return True
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Error loading model: {str(e)}")
|
| 25 |
+
return False
|
| 26 |
+
|
| 27 |
+
# Load model at startup
|
| 28 |
+
load_model()
|
| 29 |
+
|
| 30 |
+
@app.route('/', methods=['GET'])
|
| 31 |
+
def home():
|
| 32 |
+
"""Home endpoint to check if API is running"""
|
| 33 |
+
response = {
|
| 34 |
+
'status': 'API is running',
|
| 35 |
+
'model_status': 'loaded' if global_model is not None else 'not loaded',
|
| 36 |
+
'usage': {
|
| 37 |
+
'endpoint': '/classify',
|
| 38 |
+
'method': 'POST',
|
| 39 |
+
'body': {'subject': 'Your email subject here'}
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
return jsonify(response)
|
| 43 |
+
|
| 44 |
+
@app.route('/health', methods=['GET'])
|
| 45 |
+
def health_check():
|
| 46 |
+
"""Health check endpoint"""
|
| 47 |
+
if global_model is None or global_tokenizer is None:
|
| 48 |
+
return jsonify({'status': 'unhealthy', 'error': 'Model not loaded'}), 503
|
| 49 |
+
return jsonify({'status': 'healthy'})
|
| 50 |
+
|
| 51 |
+
@app.route('/classify', methods=['POST'])
|
| 52 |
+
def classify_email():
|
| 53 |
+
"""Classify email subject"""
|
| 54 |
+
if global_model is None or global_tokenizer is None:
|
| 55 |
+
return jsonify({'error': 'Model not loaded'}), 503
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
# Get request data
|
| 59 |
+
data = request.get_json()
|
| 60 |
+
|
| 61 |
+
if not data or 'subject' not in data:
|
| 62 |
+
return jsonify({
|
| 63 |
+
'error': 'No subject provided. Please send a JSON with "subject" field.'
|
| 64 |
+
}), 400
|
| 65 |
+
|
| 66 |
+
# Get the subject
|
| 67 |
+
subject = data['subject']
|
| 68 |
+
|
| 69 |
+
# Tokenize
|
| 70 |
+
inputs = global_tokenizer(subject, return_tensors="pt", truncation=True, max_length=512)
|
| 71 |
+
|
| 72 |
+
# Predict
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
outputs = global_model(**inputs)
|
| 75 |
+
logits = outputs.logits
|
| 76 |
+
|
| 77 |
+
# Get probabilities
|
| 78 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
| 79 |
+
predicted_class_id = logits.argmax().item()
|
| 80 |
+
confidence = probabilities[0][predicted_class_id].item()
|
| 81 |
+
|
| 82 |
+
# Map to custom labels
|
| 83 |
+
CUSTOM_LABELS = {
|
| 84 |
+
0: "Business/Professional",
|
| 85 |
+
1: "Personal/Casual"
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
result = {
|
| 89 |
+
'category': CUSTOM_LABELS[predicted_class_id],
|
| 90 |
+
'confidence': round(confidence, 3),
|
| 91 |
+
'all_categories': {
|
| 92 |
+
label: round(prob.item(), 3)
|
| 93 |
+
for label, prob in zip(CUSTOM_LABELS.values(), probabilities[0])
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
return jsonify(result)
|
| 98 |
+
|
| 99 |
+
except Exception as e:
|
| 100 |
+
print(f"Error in classification: {str(e)}")
|
| 101 |
+
return jsonify({'error': str(e)}), 500
|
| 102 |
+
|
| 103 |
+
if __name__ == '__main__':
|
| 104 |
+
# Use port 7860 for Hugging Face Spaces
|
| 105 |
+
port = int(os.environ.get('PORT', 7860))
|
| 106 |
+
app.run(host='0.0.0.0', port=port)
|