Update README.md
Browse files
README.md
CHANGED
@@ -100,25 +100,20 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
100 |
|
101 |
torch.manual_seed(42)
|
102 |
|
103 |
-
PROMPT_TEMPLATE = '''
|
104 |
-
|
105 |
-
{instruction}
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
{reference_answer}
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
{answer}
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
{criteria_name}
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
{criteria_rubrics}
|
122 |
'''
|
123 |
|
124 |
instruction = 'Сколько будет 2+2?'
|
@@ -142,7 +137,8 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
|
142 |
model = AutoModelForCausalLM.from_pretrained(
|
143 |
MODEL_PATH,
|
144 |
torch_dtype="auto",
|
145 |
-
device_map="auto"
|
|
|
146 |
)
|
147 |
|
148 |
messages = [
|
@@ -155,17 +151,19 @@ text = tokenizer.apply_chat_template(
|
|
155 |
)
|
156 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
157 |
|
158 |
-
|
159 |
**model_inputs,
|
160 |
max_new_tokens=4096
|
161 |
)
|
162 |
generated_ids = [
|
163 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids,
|
164 |
]
|
165 |
|
166 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
167 |
|
168 |
-
|
|
|
|
|
169 |
```
|
170 |
|
171 |
## Training Details
|
|
|
100 |
|
101 |
torch.manual_seed(42)
|
102 |
|
103 |
+
PROMPT_TEMPLATE = '''### Задание для оценки:
|
104 |
+
{instruction}
|
|
|
105 |
|
106 |
+
### Эталонный ответ:
|
107 |
+
{reference_answer}
|
|
|
108 |
|
109 |
+
### Ответ для оценки:
|
110 |
+
{answer}
|
|
|
111 |
|
112 |
+
### Критерий оценки:
|
113 |
+
{criteria_name}
|
|
|
114 |
|
115 |
+
### Шкала оценивания по критерию:
|
116 |
+
{criteria_rubrics}
|
|
|
117 |
'''
|
118 |
|
119 |
instruction = 'Сколько будет 2+2?'
|
|
|
137 |
model = AutoModelForCausalLM.from_pretrained(
|
138 |
MODEL_PATH,
|
139 |
torch_dtype="auto",
|
140 |
+
device_map="auto",
|
141 |
+
trust_remote_code=True
|
142 |
)
|
143 |
|
144 |
messages = [
|
|
|
151 |
)
|
152 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
153 |
|
154 |
+
sequence_ids = model.generate(
|
155 |
**model_inputs,
|
156 |
max_new_tokens=4096
|
157 |
)
|
158 |
generated_ids = [
|
159 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, sequence_ids)
|
160 |
]
|
161 |
|
162 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
163 |
|
164 |
+
score = model(input_ids=sequence_ids).regr_output.item()
|
165 |
+
|
166 |
+
print(response, score)
|
167 |
```
|
168 |
|
169 |
## Training Details
|