PEFT
Safetensors
llama-factory
lora
Generated from Trainer
Michael Luo commited on
Commit
605585b
·
1 Parent(s): 5023da5

add readme

Browse files
Files changed (2) hide show
  1. LICENSE +21 -0
  2. README.md +44 -23
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Agentica
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -2,6 +2,8 @@
2
  library_name: peft
3
  license: other
4
  base_model: Qwen/Qwen3-14B
 
 
5
  tags:
6
  - llama-factory
7
  - lora
@@ -14,25 +16,48 @@ model-index:
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
  should probably proofread and complete it, then remove this comment. -->
16
 
17
- # verifier
18
-
19
- This model is a fine-tuned version of [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) on the deepswe-verifier-exitreason-agent-priority-v1 dataset.
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
-
33
- ## Training procedure
34
-
35
- ### Training hyperparameters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  The following hyperparameters were used during training:
38
  - learning_rate: 1e-05
@@ -48,10 +73,6 @@ The following hyperparameters were used during training:
48
  - lr_scheduler_warmup_ratio: 0.05
49
  - num_epochs: 2.0
50
 
51
- ### Training results
52
-
53
-
54
-
55
  ### Framework versions
56
 
57
  - PEFT 0.12.0
 
2
  library_name: peft
3
  license: other
4
  base_model: Qwen/Qwen3-14B
5
+ datasets:
6
+ - r2e-edits/deepswe-swebv-eval-n16-verifier-v1
7
  tags:
8
  - llama-factory
9
  - lora
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
  should probably proofread and complete it, then remove this comment. -->
18
 
19
+ <div align="center">
20
+ <span style="font-family: default; font-size: 1.5em;">DeepSWE-Verifier</span>
21
+ <div>
22
+ 🚀 Democratizing Reinforcement Learning for LLM Agents (RLLM) 🌟
23
+ </div>
24
+ </div>
25
+ <br>
26
+ <div align="center" style="line-height: 1;">
27
+ <a href="https://github.com/agentica-project/rllm" style="margin: 2px;">
28
+ <img alt="Code" src="https://img.shields.io/badge/rLLM-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
29
+ </a>
30
+ <a href="www.google.com" target="_blank" style="margin: 2px;">
31
+ <img alt="Blog" src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
32
+ </a>
33
+ <a href="https://x.com/Agentica_" style="margin: 2px;">
34
+ <img alt="X.ai" src="https://img.shields.io/badge/Agentica-white?style=for-the-badge&logo=X&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
35
+ </a>
36
+ <a href="https://huggingface.co/agentica-org" style="margin: 2px;">
37
+ <img alt="Hugging Face" src="https://img.shields.io/badge/Agentica-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
38
+ </a>
39
+ </div>
40
+ </div>
41
+ </div>
42
+
43
+ ## DeepSWE-Verifier Overview
44
+ DeepSWE-Verifier is "critic model" that aids DeepSWE-Preview, a coding agent, for test-time scaling. For each SWE-Bench problem, DeepSWE-Preview generates multiple solutions, which produces multiple code patches, while DeepSWE-Verifier chooses the best code patch.Pairing DeepSWE-Preview with DeepSWE-Verifier can increases SWE-Bench-Verified score by +10% (See Figure 1, Execution-Free Verifier).
45
+
46
+ DeepSWE-Verifier is a fine-tuned/SFT version of [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B)
47
+
48
+ Discover more about DeepSWE-Preview's development and capabilities in our [technical blog post](www.google.com).
49
+
50
+ <div style="margin: 0 auto;">
51
+ <img src="https://cdn-lfs-us-1.hf.co/repos/fe/8c/fe8cf2197ba6bcf2ded6d3e131c2688d33f84166d98d6faf3da79cf572a06253/f6503dea8049dd709774c1f6cd1837867f5756ec82c24306a91834e30f66e767?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27bestk_plot_agent.png%3B+filename%3D%22bestk_plot_agent.png%22%3B&response-content-type=image%2Fpng&Expires=1751412784&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MTQxMjc4NH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2ZlLzhjL2ZlOGNmMjE5N2JhNmJjZjJkZWQ2ZDNlMTMxYzI2ODhkMzNmODQxNjZkOThkNmZhZjNkYTc5Y2Y1NzJhMDYyNTMvZjY1MDNkZWE4MDQ5ZGQ3MDk3NzRjMWY2Y2QxODM3ODY3ZjU3NTZlYzgyYzI0MzA2YTkxODM0ZTMwZjY2ZTc2Nz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=HqZtKWygmax5Doo9Sdj09-PeBonl1P5%7ErphhEy01Ry9FPtLN3kKublSGf7uufQzoLdMT9yQJep4MI9WcxTliyCJ2MZqyKC4jfoRaLuRxOvD4TB54TtsZ6ATknvLmXtzcg0uEiZc%7E75IP2aTNk4RVfK211N5pj6u1rZTF45vC9c7xojldEXDLHKoW9zKQx695ULxTtYOHgq3BPexZ4LcOP0AUyTIDOxyEPFeV0jRUNkrGlb7qi3Xbcav6I5jd9HEgJPwioqK2s4JR4HktQS7oOLIrgFuNtjktOU8ReHzb92o7M7SqMWhn37wDU9gMgYui60uArDuTdmkcXCxZolwZVA__&Key-Pair-Id=K24J24Z295AEI9" style="width: 100%;" />
52
+ <p align="center" style="margin-top: 8px; font-style: italic; color: #666;">
53
+ Figure 1: SWE-Bench Verified Performance w.r.t. different TTS strategies. With hybrid TTS, DeepSWE-Preview achieves 59%, beating the current SOTA open-weights model (SkyWork + TTS, 47%) by 12%. We note that only using execution-based and execution-free verifiers is still effective and can bring 10+% performance.
54
+ </p>
55
+ </div>
56
+
57
+
58
+ ## Training
59
+
60
+ ### Hyperparameters
61
 
62
  The following hyperparameters were used during training:
63
  - learning_rate: 1e-05
 
73
  - lr_scheduler_warmup_ratio: 0.05
74
  - num_epochs: 2.0
75
 
 
 
 
 
76
  ### Framework versions
77
 
78
  - PEFT 0.12.0