Michael Luo
commited on
Commit
·
605585b
1
Parent(s):
5023da5
add readme
Browse files
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 Agentica
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -2,6 +2,8 @@
|
|
2 |
library_name: peft
|
3 |
license: other
|
4 |
base_model: Qwen/Qwen3-14B
|
|
|
|
|
5 |
tags:
|
6 |
- llama-factory
|
7 |
- lora
|
@@ -14,25 +16,48 @@ model-index:
|
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
The following hyperparameters were used during training:
|
38 |
- learning_rate: 1e-05
|
@@ -48,10 +73,6 @@ The following hyperparameters were used during training:
|
|
48 |
- lr_scheduler_warmup_ratio: 0.05
|
49 |
- num_epochs: 2.0
|
50 |
|
51 |
-
### Training results
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
### Framework versions
|
56 |
|
57 |
- PEFT 0.12.0
|
|
|
2 |
library_name: peft
|
3 |
license: other
|
4 |
base_model: Qwen/Qwen3-14B
|
5 |
+
datasets:
|
6 |
+
- r2e-edits/deepswe-swebv-eval-n16-verifier-v1
|
7 |
tags:
|
8 |
- llama-factory
|
9 |
- lora
|
|
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
<div align="center">
|
20 |
+
<span style="font-family: default; font-size: 1.5em;">DeepSWE-Verifier</span>
|
21 |
+
<div>
|
22 |
+
🚀 Democratizing Reinforcement Learning for LLM Agents (RLLM) 🌟
|
23 |
+
</div>
|
24 |
+
</div>
|
25 |
+
<br>
|
26 |
+
<div align="center" style="line-height: 1;">
|
27 |
+
<a href="https://github.com/agentica-project/rllm" style="margin: 2px;">
|
28 |
+
<img alt="Code" src="https://img.shields.io/badge/rLLM-000000?style=for-the-badge&logo=github&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
29 |
+
</a>
|
30 |
+
<a href="www.google.com" target="_blank" style="margin: 2px;">
|
31 |
+
<img alt="Blog" src="https://img.shields.io/badge/Notion-%23000000.svg?style=for-the-badge&logo=notion&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
32 |
+
</a>
|
33 |
+
<a href="https://x.com/Agentica_" style="margin: 2px;">
|
34 |
+
<img alt="X.ai" src="https://img.shields.io/badge/Agentica-white?style=for-the-badge&logo=X&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
|
35 |
+
</a>
|
36 |
+
<a href="https://huggingface.co/agentica-org" style="margin: 2px;">
|
37 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/Agentica-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
|
38 |
+
</a>
|
39 |
+
</div>
|
40 |
+
</div>
|
41 |
+
</div>
|
42 |
+
|
43 |
+
## DeepSWE-Verifier Overview
|
44 |
+
DeepSWE-Verifier is "critic model" that aids DeepSWE-Preview, a coding agent, for test-time scaling. For each SWE-Bench problem, DeepSWE-Preview generates multiple solutions, which produces multiple code patches, while DeepSWE-Verifier chooses the best code patch.Pairing DeepSWE-Preview with DeepSWE-Verifier can increases SWE-Bench-Verified score by +10% (See Figure 1, Execution-Free Verifier).
|
45 |
+
|
46 |
+
DeepSWE-Verifier is a fine-tuned/SFT version of [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B)
|
47 |
+
|
48 |
+
Discover more about DeepSWE-Preview's development and capabilities in our [technical blog post](www.google.com).
|
49 |
+
|
50 |
+
<div style="margin: 0 auto;">
|
51 |
+
<img src="https://cdn-lfs-us-1.hf.co/repos/fe/8c/fe8cf2197ba6bcf2ded6d3e131c2688d33f84166d98d6faf3da79cf572a06253/f6503dea8049dd709774c1f6cd1837867f5756ec82c24306a91834e30f66e767?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27bestk_plot_agent.png%3B+filename%3D%22bestk_plot_agent.png%22%3B&response-content-type=image%2Fpng&Expires=1751412784&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MTQxMjc4NH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zL2ZlLzhjL2ZlOGNmMjE5N2JhNmJjZjJkZWQ2ZDNlMTMxYzI2ODhkMzNmODQxNjZkOThkNmZhZjNkYTc5Y2Y1NzJhMDYyNTMvZjY1MDNkZWE4MDQ5ZGQ3MDk3NzRjMWY2Y2QxODM3ODY3ZjU3NTZlYzgyYzI0MzA2YTkxODM0ZTMwZjY2ZTc2Nz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=HqZtKWygmax5Doo9Sdj09-PeBonl1P5%7ErphhEy01Ry9FPtLN3kKublSGf7uufQzoLdMT9yQJep4MI9WcxTliyCJ2MZqyKC4jfoRaLuRxOvD4TB54TtsZ6ATknvLmXtzcg0uEiZc%7E75IP2aTNk4RVfK211N5pj6u1rZTF45vC9c7xojldEXDLHKoW9zKQx695ULxTtYOHgq3BPexZ4LcOP0AUyTIDOxyEPFeV0jRUNkrGlb7qi3Xbcav6I5jd9HEgJPwioqK2s4JR4HktQS7oOLIrgFuNtjktOU8ReHzb92o7M7SqMWhn37wDU9gMgYui60uArDuTdmkcXCxZolwZVA__&Key-Pair-Id=K24J24Z295AEI9" style="width: 100%;" />
|
52 |
+
<p align="center" style="margin-top: 8px; font-style: italic; color: #666;">
|
53 |
+
Figure 1: SWE-Bench Verified Performance w.r.t. different TTS strategies. With hybrid TTS, DeepSWE-Preview achieves 59%, beating the current SOTA open-weights model (SkyWork + TTS, 47%) by 12%. We note that only using execution-based and execution-free verifiers is still effective and can bring 10+% performance.
|
54 |
+
</p>
|
55 |
+
</div>
|
56 |
+
|
57 |
+
|
58 |
+
## Training
|
59 |
+
|
60 |
+
### Hyperparameters
|
61 |
|
62 |
The following hyperparameters were used during training:
|
63 |
- learning_rate: 1e-05
|
|
|
73 |
- lr_scheduler_warmup_ratio: 0.05
|
74 |
- num_epochs: 2.0
|
75 |
|
|
|
|
|
|
|
|
|
76 |
### Framework versions
|
77 |
|
78 |
- PEFT 0.12.0
|