afsagag commited on
Commit
02c146c
·
verified ·
1 Parent(s): 2cce74f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -131
README.md CHANGED
@@ -1,199 +1,218 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
 
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
 
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
 
 
 
 
 
140
 
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ base_model: t5-base
5
+ tags:
6
+ - text2text-generation
7
+ - music
8
+ - spotify
9
+ - audio-features
10
+ - t5
11
+ language:
12
+ - en
13
+ datasets:
14
+ - custom
15
+ metrics:
16
+ - mae
17
+ - mse
18
+ - correlation
19
  ---
20
 
21
+ # T5 Spotify Features Generator
 
 
 
22
 
23
+ A fine-tuned T5-base model that generates Spotify audio features from natural language music descriptions.
24
 
25
  ## Model Details
26
 
27
  ### Model Description
28
 
29
+ This model converts natural language descriptions of music preferences into Spotify audio feature values. For example, "energetic dance music for a party" becomes `"danceability": 0.9, "energy": 0.9, "valence": 0.9`.
 
 
 
 
 
 
 
 
 
 
30
 
31
+ - **Developed by:** afsagag
32
+ - **Model type:** Text-to-Text Generation (T5)
33
+ - **Language(s):** English
34
+ - **License:** Apache-2.0
35
+ - **Finetuned from model:** [t5-base](https://huggingface.co/t5-base)
36
 
37
+ ### Model Sources
38
 
39
+ - **Repository:** https://huggingface.co/afsagag/t5-spotify-features-generator
 
 
40
 
41
  ## Uses
42
 
 
 
43
  ### Direct Use
44
 
45
+ Generate Spotify audio features from music descriptions for:
46
+ - Music recommendation systems
47
+ - Playlist generation
48
+ - Music discovery applications
49
+ - Audio feature prediction research
50
+
51
+ ```python
52
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
53
+ import torch
54
+
55
+ # Load model and tokenizer
56
+ model = T5ForConditionalGeneration.from_pretrained("afsagag/t5-spotify-features-generator")
57
+ tokenizer = T5Tokenizer.from_pretrained("afsagag/t5-spotify-features-generator")
58
+
59
+ def generate_spotify_features(prompt, model, tokenizer):
60
+ input_text = f"prompt: {prompt}"
61
+ input_ids = tokenizer(input_text, return_tensors="pt", max_length=256, truncation=True).input_ids
62
+
63
+ with torch.no_grad():
64
+ outputs = model.generate(
65
+ input_ids,
66
+ max_length=256,
67
+ num_beams=4,
68
+ early_stopping=True,
69
+ do_sample=False,
70
+ pad_token_id=tokenizer.pad_token_id,
71
+ eos_token_id=tokenizer.eos_token_id
72
+ )
73
+
74
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
75
+ return result
76
+
77
+ # Example usage
78
+ prompt = "I need energetic dance music for a party"
79
+ features = generate_spotify_features(prompt, model, tokenizer)
80
+ print(features) # Output: "danceability": 0.9, "energy": 0.9, "valence": 0.9
81
+ ```
82
 
83
  ### Out-of-Scope Use
84
 
85
+ - Generating actual audio or music files
86
+ - Non-English music descriptions (model trained on English only)
87
+ - Precise music recommendation without human oversight
88
+ - Applications requiring guaranteed JSON format output
89
 
90
  ## Bias, Risks, and Limitations
91
 
92
+ - **Training Data Bias:** Reflects patterns in the training dataset, may not represent all musical styles or cultural contexts
93
+ - **JSON Format Issues:** May occasionally generate incomplete JSON objects
94
+ - **Subjective Features:** Audio features like "valence" and "energy" are subjective and may not align with all listeners' perceptions
95
+ - **Western Music Bias:** Training focused on Western musical concepts and terminology
96
 
97
  ### Recommendations
98
 
99
+ - Validate generated features against expected ranges
100
+ - Use as a starting point rather than definitive feature values
101
+ - Consider cultural and stylistic diversity when applying to diverse music catalogs
102
+ - Implement post-processing to ensure valid JSON output if required
 
 
 
 
 
103
 
104
  ## Training Details
105
 
106
  ### Training Data
107
 
108
+ Custom dataset of 4,206 examples pairing natural language music descriptions with Spotify audio features:
109
+ - **Training set:** 3,364 examples
110
+ - **Validation set:** 421 examples
111
+ - **Test set:** 421 examples
112
 
113
  ### Training Procedure
114
 
 
 
 
 
 
 
 
115
  #### Training Hyperparameters
116
 
117
+ - **Training epochs:** 5
118
+ - **Learning rate:** 2e-4
119
+ - **Batch size:** 32 (train), 16 (eval)
120
+ - **Gradient accumulation steps:** 2
121
+ - **LR scheduler:** Cosine with 5% warmup
122
+ - **Max sequence length:** 256 tokens
123
+ - **Training regime:** bf16 mixed precision
124
 
125
+ #### Speeds, Sizes, Times
126
 
127
+ - **Training time:** ~58 minutes
128
+ - **Final training loss:** 0.5579
129
+ - **Model size:** ~892MB
130
 
131
  ## Evaluation
132
 
 
 
133
  ### Testing Data, Factors & Metrics
134
 
135
  #### Testing Data
136
 
137
+ Same distribution as training data: natural language music descriptions paired with Spotify audio features.
 
 
 
 
 
 
 
 
138
 
139
  #### Metrics
140
 
141
+ - Mean Absolute Error (MAE) between predicted and actual feature values
142
+ - Mean Squared Error (MSE) for regression accuracy
143
+ - Pearson correlation coefficients for individual features
144
+ - Valid JSON ratio for output format correctness
145
 
146
  ### Results
147
 
148
+ The model demonstrates strong semantic understanding of musical concepts:
 
 
 
 
 
 
 
 
149
 
150
+ | Prompt | Generated Features |
151
+ |--------|-------------------|
152
+ | "I need energetic dance music for a party" | `"danceability": 0.9, "energy": 0.9, "valence": 0.9` |
153
+ | "Play calm acoustic songs for studying" | `"acousticness": 0.8, "energy": 0.2, "valence": 0.2` |
154
+ | "Upbeat music for working out" | `"danceability": 0.7, "energy": 0.8, "valence": 0.7` |
155
+ | "Relaxing instrumental background music" | `"acousticness": 0.3, "energy": 0.2, "instrumentalness": 0.8, "valence": 0.2` |
156
+ | "Happy pop music for driving" | `"danceability": 0.8, "energy": 0.8, "valence": 0.8` |
157
 
158
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  ### Model Architecture and Objective
161
 
162
+ - **Base Architecture:** T5 (Text-To-Text Transfer Transformer)
163
+ - **Model Size:** t5-base (220M parameters)
164
+ - **Objective:** Sequence-to-sequence generation of audio features from text descriptions
165
+ - **Input Format:** `"prompt: {natural_language_description}"`
166
+ - **Output Format:** JSON-style audio feature values
167
 
168
  ### Compute Infrastructure
169
 
 
 
170
  #### Hardware
171
 
172
+ - GPU with CUDA support
173
+ - Mixed precision training (bf16)
174
 
175
  #### Software
176
 
177
+ - PyTorch with CUDA
178
+ - Transformers library
179
+ - Datasets library for data processing
180
+
181
+ ## Spotify Audio Features Reference
182
+
183
+ The model generates these Spotify audio features:
184
+
185
+ - **danceability** (0.0-1.0): How suitable a track is for dancing
186
+ - **energy** (0.0-1.0): Perceptual measure of intensity and power
187
+ - **valence** (0.0-1.0): Musical positivity (happy vs sad)
188
+ - **acousticness** (0.0-1.0): Confidence measure of acoustic nature
189
+ - **instrumentalness** (0.0-1.0): Predicts absence of vocals
190
+ - **speechiness** (0.0-1.0): Presence of spoken words
191
+ - **liveness** (0.0-1.0): Presence of live audience
192
+ - **loudness** (dB): Overall loudness, typically -60 to 0 dB
193
+ - **tempo** (BPM): Estimated beats per minute
194
+ - **duration_ms**: Track duration in milliseconds
195
+ - **key** (0-11): Musical key (C=0, C♯/D♭=1, etc.)
196
+ - **mode** (0-1): Modality (0=minor, 1=major)
197
+ - **time_signature** (3-7): Time signature
198
+ - **popularity** (0-100): Spotify popularity score
199
+
200
+ ## Citation
201
+
202
+ ```bibtex
203
+ @misc{t5-spotify-features-generator,
204
+ author = {afsagag},
205
+ title = {T5 Spotify Features Generator: Fine-tuned T5 for Music Feature Prediction from Natural Language},
206
+ year = {2025},
207
+ publisher = {Hugging Face},
208
+ howpublished = {\url{https://huggingface.co/afsagag/t5-spotify-features-generator}}
209
+ }
210
+ ```
211
+
212
+ ## Model Card Authors
213
+
214
+ afsagag
215
 
216
  ## Model Card Contact
217
 
218
+ Contact through Hugging Face profile: [@afsagag](https://huggingface.co/afsagag)