File size: 17,192 Bytes
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49cb99
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567caa
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9dd8ed
a87594a
 
 
 
 
 
 
 
 
 
c9dd8ed
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9dd8ed
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
a49cb99
 
 
 
 
 
 
a87594a
 
 
 
 
c9dd8ed
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
a49cb99
 
 
 
 
 
 
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a49cb99
a87594a
 
 
 
 
 
 
 
 
 
 
 
a49cb99
 
 
 
 
 
 
 
 
 
 
a87594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1056095
- loss:CoSENTLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: In 2015 Adolf Hitler appeared in the kickstarter short movie ``
    Kung Fury `` as Taccone ( A.K.A .
  sentences:
  - In 2015 , Adolf Hitler appeared in the Kickstarter - short film `` Kung Fury ``
    as Taccone ( A.K.A .
  - In 1795 , the only white residents were Dr. John Laidley and two brothers with
    the surname Ainslie .
  - The 125th University Match was played in March 2014 at the Rye Golf Club , Oxford
    , East Sussex won the game 8.5 - 6.5 .
- source_sentence: From 1973 to 1974 , Aubrey toured with the Cambridge Theatre Company
    as Diggory in `` She Stoops to Conquer `` and again as Aguecheek .
  sentences:
  - Oxide can be reduced to metallic samarium at higher temperatures by heating with
    a reducing agent such as hydrogen or carbon monoxide .
  - From 1973 to 1974 Aguecheek toured with the Cambridge Theatre Company as Diggory
    in `` You Stoops to Conquer `` and again as Aubrey .
  - The medals were presented by Barry Maister , IOC member , New Zealand and Sarah
    Webb Gosling , Vice President of World Sailing .
- source_sentence: There is no official wall on the border , although there are sections
    of fence near populated areas and continuous border crossings .
  sentences:
  - The 2014 -- 15 Boston Bruins season was the 91st season for the National Hockey
    League franchise that was established on November 1 , 1924 .
  - He was trained by the Inghams and owned by John Hawkes .
  - There is no continuous wall on the border , although there are fence sections
    near populated areas and official border crossings .
- source_sentence: Capital . `` The French established similar hill stations in Indochina
    , such as Dalat built in 1921 .
  sentences:
  - Lubuk China is a small town in Alor Gajah District , Melaka , Malaysia . It is
    situated near the border with Negeri Sembilan .
  - The French established similar hill stations in Indochina , such as Dalat , built
    in 1921 .
  - John Potts ( or Pott ) was a doctor and colonial governor of Virginia in the Jamestown
    settlement at Virginia Colony in the early 17th century .
- source_sentence: The band pursued `` signals `` in January 2012 in three weeks ,
    and drums were recorded in a day and a half .
  sentences:
  - It was repaired at the beginning of the 20th century and is listed as closed in
    our records .
  - The band tracked `` Signals `` in three weeks in January 2012 . Drums were recorded
    in a day and a half .
  - Contributors include actor Anton LaVey , Satanist Christopher Lee , serial killer
    expert Clive Barker , author Karen Greenlee , and necrophile Robert Ressler .
datasets:
- aditeyabaral-redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: val
      type: val
    metrics:
    - type: cosine_accuracy
      value: 0.7629982153480072
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8640064001083374
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6907391673746814
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8261547684669495
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6290946608202218
      name: Cosine Precision
    - type: cosine_recall
      value: 0.7657770800627943
      name: Cosine Recall
    - type: cosine_ap
      value: 0.7350929175906749
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.47714361581572273
      name: Cosine Mcc
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy
      value: 0.7035036519888425
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8520700931549072
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.7118460123901542
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8109649419784546
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5979034259235814
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8794413407821229
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6473553527394227
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.4408784752892243
      name: Cosine Mcc
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("aditeyabaral-redis/langcache-embed-v3")
# Run inference
sentences = [
    'The band pursued `` signals `` in January 2012 in three weeks , and drums were recorded in a day and a half .',
    'The band tracked `` Signals `` in three weeks in January 2012 . Drums were recorded in a day and a half .',
    'Contributors include actor Anton LaVey , Satanist Christopher Lee , serial killer expert Clive Barker , author Karen Greenlee , and necrophile Robert Ressler .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9599, 0.4944],
#         [0.9599, 1.0000, 0.5097],
#         [0.4944, 0.5097, 1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Datasets: `val` and `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | val        | test       |
|:--------------------------|:-----------|:-----------|
| cosine_accuracy           | 0.763      | 0.7035     |
| cosine_accuracy_threshold | 0.864      | 0.8521     |
| cosine_f1                 | 0.6907     | 0.7118     |
| cosine_f1_threshold       | 0.8262     | 0.811      |
| cosine_precision          | 0.6291     | 0.5979     |
| cosine_recall             | 0.7658     | 0.8794     |
| **cosine_ap**             | **0.7351** | **0.6474** |
| cosine_mcc                | 0.4771     | 0.4409     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
* Size: 62,021 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.46 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.36 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> |
* Samples:
  | sentence1                                                                                                                                   | sentence2                                                                                                                                     | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>1</code> |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code>                       | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code>                | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/aditeyabaral-redis/langcache-sentencepairs-v1)
* Size: 62,021 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                             |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.46 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 27.36 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>0: ~50.30%</li><li>1: ~49.70%</li></ul> |
* Samples:
  | sentence1                                                                                                                                   | sentence2                                                                                                                                     | label          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>1</code> |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> | <code>0</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code>                       | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code>                | <code>1</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Logs
| Epoch | Step | val_cosine_ap | test_cosine_ap |
|:-----:|:----:|:-------------:|:--------------:|
| -1    | -1   | 0.7351        | 0.6474         |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->