Commit
·
607dfc0
1
Parent(s):
43fe6dc
Align lib_name as birefnet and add inference endpoint option.
Browse files- README.md +1 -1
- birefnet.py +28 -24
- handler.py +138 -0
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
library_name:
|
| 3 |
tags:
|
| 4 |
- background-removal
|
| 5 |
- mask-generation
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: birefnet
|
| 3 |
tags:
|
| 4 |
- background-removal
|
| 5 |
- mask-generation
|
birefnet.py
CHANGED
|
@@ -615,6 +615,7 @@ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
|
| 615 |
|
| 616 |
# config = Config()
|
| 617 |
|
|
|
|
| 618 |
class Mlp(nn.Module):
|
| 619 |
""" Multilayer perceptron."""
|
| 620 |
|
|
@@ -739,7 +740,8 @@ class WindowAttention(nn.Module):
|
|
| 739 |
attn = (q @ k.transpose(-2, -1))
|
| 740 |
|
| 741 |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 742 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
|
|
|
| 743 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 744 |
attn = attn + relative_position_bias.unsqueeze(0)
|
| 745 |
|
|
@@ -974,8 +976,9 @@ class BasicLayer(nn.Module):
|
|
| 974 |
"""
|
| 975 |
|
| 976 |
# calculate attention mask for SW-MSA
|
| 977 |
-
|
| 978 |
-
|
|
|
|
| 979 |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
| 980 |
h_slices = (slice(0, -self.window_size),
|
| 981 |
slice(-self.window_size, -self.shift_size),
|
|
@@ -1961,6 +1964,7 @@ import torch.nn as nn
|
|
| 1961 |
import torch.nn.functional as F
|
| 1962 |
from kornia.filters import laplacian
|
| 1963 |
from transformers import PreTrainedModel
|
|
|
|
| 1964 |
|
| 1965 |
# from config import Config
|
| 1966 |
# from dataset import class_labels_TR_sorted
|
|
@@ -1974,6 +1978,18 @@ from transformers import PreTrainedModel
|
|
| 1974 |
from .BiRefNet_config import BiRefNetConfig
|
| 1975 |
|
| 1976 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1977 |
class BiRefNet(
|
| 1978 |
PreTrainedModel
|
| 1979 |
):
|
|
@@ -2124,18 +2140,6 @@ class Decoder(nn.Module):
|
|
| 2124 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2125 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2126 |
|
| 2127 |
-
def get_patches_batch(self, x, p):
|
| 2128 |
-
_size_h, _size_w = p.shape[2:]
|
| 2129 |
-
patches_batch = []
|
| 2130 |
-
for idx in range(x.shape[0]):
|
| 2131 |
-
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
| 2132 |
-
patches_x = []
|
| 2133 |
-
for column_x in columns_x:
|
| 2134 |
-
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
| 2135 |
-
patch_sample = torch.cat(patches_x, dim=1)
|
| 2136 |
-
patches_batch.append(patch_sample)
|
| 2137 |
-
return torch.cat(patches_batch, dim=0)
|
| 2138 |
-
|
| 2139 |
def forward(self, features):
|
| 2140 |
if self.training and self.config.out_ref:
|
| 2141 |
outs_gdt_pred = []
|
|
@@ -2146,10 +2150,10 @@ class Decoder(nn.Module):
|
|
| 2146 |
outs = []
|
| 2147 |
|
| 2148 |
if self.config.dec_ipt:
|
| 2149 |
-
patches_batch =
|
| 2150 |
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2151 |
p4 = self.decoder_block4(x4)
|
| 2152 |
-
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
| 2153 |
if self.config.out_ref:
|
| 2154 |
p4_gdt = self.gdt_convs_4(p4)
|
| 2155 |
if self.training:
|
|
@@ -2167,10 +2171,10 @@ class Decoder(nn.Module):
|
|
| 2167 |
_p3 = _p4 + self.lateral_block4(x3)
|
| 2168 |
|
| 2169 |
if self.config.dec_ipt:
|
| 2170 |
-
patches_batch =
|
| 2171 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2172 |
p3 = self.decoder_block3(_p3)
|
| 2173 |
-
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
| 2174 |
if self.config.out_ref:
|
| 2175 |
p3_gdt = self.gdt_convs_3(p3)
|
| 2176 |
if self.training:
|
|
@@ -2193,10 +2197,10 @@ class Decoder(nn.Module):
|
|
| 2193 |
_p2 = _p3 + self.lateral_block3(x2)
|
| 2194 |
|
| 2195 |
if self.config.dec_ipt:
|
| 2196 |
-
patches_batch =
|
| 2197 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2198 |
p2 = self.decoder_block2(_p2)
|
| 2199 |
-
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
| 2200 |
if self.config.out_ref:
|
| 2201 |
p2_gdt = self.gdt_convs_2(p2)
|
| 2202 |
if self.training:
|
|
@@ -2214,17 +2218,17 @@ class Decoder(nn.Module):
|
|
| 2214 |
_p1 = _p2 + self.lateral_block2(x1)
|
| 2215 |
|
| 2216 |
if self.config.dec_ipt:
|
| 2217 |
-
patches_batch =
|
| 2218 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2219 |
_p1 = self.decoder_block1(_p1)
|
| 2220 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 2221 |
|
| 2222 |
if self.config.dec_ipt:
|
| 2223 |
-
patches_batch =
|
| 2224 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2225 |
p1_out = self.conv_out1(_p1)
|
| 2226 |
|
| 2227 |
-
if self.config.ms_supervision:
|
| 2228 |
outs.append(m4)
|
| 2229 |
outs.append(m3)
|
| 2230 |
outs.append(m2)
|
|
|
|
| 615 |
|
| 616 |
# config = Config()
|
| 617 |
|
| 618 |
+
|
| 619 |
class Mlp(nn.Module):
|
| 620 |
""" Multilayer perceptron."""
|
| 621 |
|
|
|
|
| 740 |
attn = (q @ k.transpose(-2, -1))
|
| 741 |
|
| 742 |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 743 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
|
| 744 |
+
) # Wh*Ww, Wh*Ww, nH
|
| 745 |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 746 |
attn = attn + relative_position_bias.unsqueeze(0)
|
| 747 |
|
|
|
|
| 976 |
"""
|
| 977 |
|
| 978 |
# calculate attention mask for SW-MSA
|
| 979 |
+
# Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5.
|
| 980 |
+
Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size
|
| 981 |
+
Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size
|
| 982 |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
| 983 |
h_slices = (slice(0, -self.window_size),
|
| 984 |
slice(-self.window_size, -self.shift_size),
|
|
|
|
| 1964 |
import torch.nn.functional as F
|
| 1965 |
from kornia.filters import laplacian
|
| 1966 |
from transformers import PreTrainedModel
|
| 1967 |
+
from einops import rearrange
|
| 1968 |
|
| 1969 |
# from config import Config
|
| 1970 |
# from dataset import class_labels_TR_sorted
|
|
|
|
| 1978 |
from .BiRefNet_config import BiRefNetConfig
|
| 1979 |
|
| 1980 |
|
| 1981 |
+
def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'):
|
| 1982 |
+
if patch_ref is not None:
|
| 1983 |
+
grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1]
|
| 1984 |
+
patches = rearrange(image, transformation, hg=grid_h, wg=grid_w)
|
| 1985 |
+
return patches
|
| 1986 |
+
|
| 1987 |
+
def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'):
|
| 1988 |
+
if patch_ref is not None:
|
| 1989 |
+
grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1]
|
| 1990 |
+
image = rearrange(patches, transformation, hg=grid_h, wg=grid_w)
|
| 1991 |
+
return image
|
| 1992 |
+
|
| 1993 |
class BiRefNet(
|
| 1994 |
PreTrainedModel
|
| 1995 |
):
|
|
|
|
| 2140 |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2141 |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
| 2142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2143 |
def forward(self, features):
|
| 2144 |
if self.training and self.config.out_ref:
|
| 2145 |
outs_gdt_pred = []
|
|
|
|
| 2150 |
outs = []
|
| 2151 |
|
| 2152 |
if self.config.dec_ipt:
|
| 2153 |
+
patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
| 2154 |
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2155 |
p4 = self.decoder_block4(x4)
|
| 2156 |
+
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
|
| 2157 |
if self.config.out_ref:
|
| 2158 |
p4_gdt = self.gdt_convs_4(p4)
|
| 2159 |
if self.training:
|
|
|
|
| 2171 |
_p3 = _p4 + self.lateral_block4(x3)
|
| 2172 |
|
| 2173 |
if self.config.dec_ipt:
|
| 2174 |
+
patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
| 2175 |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2176 |
p3 = self.decoder_block3(_p3)
|
| 2177 |
+
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
|
| 2178 |
if self.config.out_ref:
|
| 2179 |
p3_gdt = self.gdt_convs_3(p3)
|
| 2180 |
if self.training:
|
|
|
|
| 2197 |
_p2 = _p3 + self.lateral_block3(x2)
|
| 2198 |
|
| 2199 |
if self.config.dec_ipt:
|
| 2200 |
+
patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
| 2201 |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2202 |
p2 = self.decoder_block2(_p2)
|
| 2203 |
+
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
|
| 2204 |
if self.config.out_ref:
|
| 2205 |
p2_gdt = self.gdt_convs_2(p2)
|
| 2206 |
if self.training:
|
|
|
|
| 2218 |
_p1 = _p2 + self.lateral_block2(x1)
|
| 2219 |
|
| 2220 |
if self.config.dec_ipt:
|
| 2221 |
+
patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
| 2222 |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2223 |
_p1 = self.decoder_block1(_p1)
|
| 2224 |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
| 2225 |
|
| 2226 |
if self.config.dec_ipt:
|
| 2227 |
+
patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
|
| 2228 |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
| 2229 |
p1_out = self.conv_out1(_p1)
|
| 2230 |
|
| 2231 |
+
if self.config.ms_supervision and self.training:
|
| 2232 |
outs.append(m4)
|
| 2233 |
outs.append(m3)
|
| 2234 |
outs.append(m2)
|
handler.py
ADDED
|
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py.
|
| 2 |
+
from typing import Dict, List, Any, Tuple
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import torch
|
| 10 |
+
from torchvision import transforms
|
| 11 |
+
from transformers import AutoModelForImageSegmentation
|
| 12 |
+
|
| 13 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
| 14 |
+
|
| 15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 16 |
+
|
| 17 |
+
### image_proc.py
|
| 18 |
+
def refine_foreground(image, mask, r=90):
|
| 19 |
+
if mask.size != image.size:
|
| 20 |
+
mask = mask.resize(image.size)
|
| 21 |
+
image = np.array(image) / 255.0
|
| 22 |
+
mask = np.array(mask) / 255.0
|
| 23 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
| 24 |
+
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 25 |
+
return image_masked
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
| 29 |
+
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 30 |
+
alpha = alpha[:, :, None]
|
| 31 |
+
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
|
| 32 |
+
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
| 36 |
+
if isinstance(image, Image.Image):
|
| 37 |
+
image = np.array(image) / 255.0
|
| 38 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 39 |
+
|
| 40 |
+
blurred_FA = cv2.blur(F * alpha, (r, r))
|
| 41 |
+
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
| 42 |
+
|
| 43 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 44 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 45 |
+
F = blurred_F + alpha * \
|
| 46 |
+
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
| 47 |
+
F = np.clip(F, 0, 1)
|
| 48 |
+
return F, blurred_B
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ImagePreprocessor():
|
| 52 |
+
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
|
| 53 |
+
self.transform_image = transforms.Compose([
|
| 54 |
+
transforms.Resize(resolution),
|
| 55 |
+
transforms.ToTensor(),
|
| 56 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
| 57 |
+
])
|
| 58 |
+
|
| 59 |
+
def proc(self, image: Image.Image) -> torch.Tensor:
|
| 60 |
+
image = self.transform_image(image)
|
| 61 |
+
return image
|
| 62 |
+
|
| 63 |
+
usage_to_weights_file = {
|
| 64 |
+
'General': 'BiRefNet',
|
| 65 |
+
'General-HR': 'BiRefNet_HR',
|
| 66 |
+
'General-Lite': 'BiRefNet_lite',
|
| 67 |
+
'General-Lite-2K': 'BiRefNet_lite-2K',
|
| 68 |
+
'General-reso_512': 'BiRefNet-reso_512',
|
| 69 |
+
'Matting': 'BiRefNet-matting',
|
| 70 |
+
'Portrait': 'BiRefNet-portrait',
|
| 71 |
+
'DIS': 'BiRefNet-DIS5K',
|
| 72 |
+
'HRSOD': 'BiRefNet-HRSOD',
|
| 73 |
+
'COD': 'BiRefNet-COD',
|
| 74 |
+
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
|
| 75 |
+
'General-legacy': 'BiRefNet-legacy'
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# Choose the version of BiRefNet here.
|
| 79 |
+
usage = 'Matting'
|
| 80 |
+
|
| 81 |
+
# Set resolution
|
| 82 |
+
if usage in ['General-Lite-2K']:
|
| 83 |
+
resolution = (2560, 1440)
|
| 84 |
+
elif usage in ['General-reso_512']:
|
| 85 |
+
resolution = (512, 512)
|
| 86 |
+
elif usage in ['General-HR']:
|
| 87 |
+
resolution = (2048, 2048)
|
| 88 |
+
else:
|
| 89 |
+
resolution = (1024, 1024)
|
| 90 |
+
|
| 91 |
+
half_precision = True
|
| 92 |
+
|
| 93 |
+
class EndpointHandler():
|
| 94 |
+
def __init__(self, path=''):
|
| 95 |
+
self.birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 96 |
+
'/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True
|
| 97 |
+
)
|
| 98 |
+
self.birefnet.to(device)
|
| 99 |
+
self.birefnet.eval()
|
| 100 |
+
if half_precision:
|
| 101 |
+
self.birefnet.half()
|
| 102 |
+
|
| 103 |
+
def __call__(self, data: Dict[str, Any]):
|
| 104 |
+
"""
|
| 105 |
+
data args:
|
| 106 |
+
inputs (:obj: `str`)
|
| 107 |
+
date (:obj: `str`)
|
| 108 |
+
Return:
|
| 109 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
| 110 |
+
"""
|
| 111 |
+
print('data["inputs"] = ', data["inputs"])
|
| 112 |
+
image_src = data["inputs"]
|
| 113 |
+
if isinstance(image_src, str):
|
| 114 |
+
if os.path.isfile(image_src):
|
| 115 |
+
image_ori = Image.open(image_src)
|
| 116 |
+
else:
|
| 117 |
+
response = requests.get(image_src)
|
| 118 |
+
image_data = BytesIO(response.content)
|
| 119 |
+
image_ori = Image.open(image_data)
|
| 120 |
+
else:
|
| 121 |
+
image_ori = Image.fromarray(image_src)
|
| 122 |
+
|
| 123 |
+
image = image_ori.convert('RGB')
|
| 124 |
+
# Preprocess the image
|
| 125 |
+
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
|
| 126 |
+
image_proc = image_preprocessor.proc(image)
|
| 127 |
+
image_proc = image_proc.unsqueeze(0)
|
| 128 |
+
|
| 129 |
+
# Prediction
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
preds = self.birefnet(image_proc.to(device).half() if half_precision else image_proc.to(device))[-1].sigmoid().cpu()
|
| 132 |
+
pred = preds[0].squeeze()
|
| 133 |
+
|
| 134 |
+
# Show Results
|
| 135 |
+
pred_pil = transforms.ToPILImage()(pred)
|
| 136 |
+
image_masked = refine_foreground(image, pred_pil)
|
| 137 |
+
image_masked.putalpha(pred_pil.resize(image.size))
|
| 138 |
+
return image_masked
|