File size: 3,442 Bytes
3304492 1d83712 3304492 1d83712 0aecace 3304492 04c2a43 1d83712 3304492 d23f26e 04c2a43 3304492 1d83712 3304492 1d83712 3304492 1d83712 3304492 0aecace 3304492 1d83712 3304492 1d83712 3304492 1d83712 04c2a43 1d83712 3304492 1d83712 04c2a43 1d83712 04c2a43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
license: apache-2.0
library_name: diffusers
---
test under this PR https://github.com/huggingface/diffusers/pull/9672
#### create differential diffusion pipeline
```python
from diffusers.modular_pipelines import ModularPipeline, ComponentsManager
import torch
from diffusers.utils import load_image
repo_id = "YiYiXu/modular-diffdiff-0704"
components = ComponentsManager()
diffdiff_pipeline = ModularPipeline.from_pretrained(repo_id, trust_remote_code=True, components_manager=components, collection="diffdiff")
diffdiff_pipeline.load_default_components(torch_dtype=torch.float16)
components.enable_auto_cpu_offload()
```
#### basic diff-diff
```python
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```

#### ip-adapter
```python
diffdiff_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
diffdiff_pipeline.set_ip_adapter_scale(0.6)
ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
ip_adapter_image=ip_adapter_image,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```

#### controlnet
```python
diffdiff_pipeline.unload_ip_adapter()
control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.png")
image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true")
mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true")
prompt = "a green pear"
negative_prompt = "blurry"
generator = torch.Generator(device="cuda").manual_seed(42)
image = diffdiff_pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=25,
generator=generator,
control_image=control_image,
controlnet_conditioning_scale=0.5,
diffdiff_map=mask,
image=image,
output="images"
)[0]
```
 |