Y-J-Ju commited on
Commit
642b24e
·
1 Parent(s): 9940b47

update model weights

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,163 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ datasets:
4
+ - TIGER-Lab/MMEB-train
5
+ language:
6
+ - en
7
+ metrics:
8
+ - precision
9
+ base_model:
10
+ - Qwen/Qwen2-VL-7B-Instruct
11
+ pipeline_tag: sentence-similarity
12
+ library_name: transformers
13
+ tags:
14
+ - Qwen2-VL
15
+ - qwen2-vl
16
+ - MMEB
17
  ---
18
+
19
+ <p align="center">
20
+ <img src="images/SaHa_logo.png" alt="SaHa Logo" style="width: 100%; max-width: 450px;">
21
+ </p>
22
+
23
+ # SaHa-Qwen2-VL-7B-Instruct
24
+
25
+ ## Model Summary
26
+
27
+ **SaHa-Qwen2-VL-7B-Instruct** is a state-of-the-art universal multimodal embedding model based on the **Qwen2-VL-7B-Instruct** architecture. This model has been fine-tuned using our innovative Self-aware Hard Negative Sampling (SaHa) strategy, which is designed to efficiently adapt generative Multimodal Large Language Models (MLLMs) for discriminative embedding tasks.
28
+
29
+ Our approach leverages a hierarchical embedding prompt to unlock the powerful zero-shot capabilities of MLLMs and then fine-tunes the model with SaHa to achieve superior performance on universal multimodal retrieval benchmarks. This model significantly reduces the computational costs associated with traditional contrastive pre-training while delivering state-of-the-art results.
30
+
31
+ For more details, please refer to our paper: [From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model](https://arxiv.org/abs/2508.00955) and our [GitHub repository](https://github.com/yeongjoonJu/Gen2Embed).
32
+
33
+ ## How to Use
34
+
35
+ You can easily use this model with the `transformers` library for sentence and image similarity tasks. Make sure you have the latest version of `transformers`, `torch`, and `Pillow` installed.
36
+
37
+ ```bash
38
+ pip install transformers>=4.46.1 torch pillow
39
+ ```
40
+
41
+ ### Get Embeddings from Text or Image
42
+
43
+ Here's how to get embeddings for text or image inputs. The model uses a specific prompt structure to generate high-quality embeddings.
44
+
45
+ **Load Model**
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoProcessor, AutoConfig, Qwen2VLForConditionalGeneration
50
+
51
+ # Load the model and tokenizer
52
+ model_id = "Y-J-Ju/SaHa-Qwen2-VL-7B-Instruct"
53
+
54
+ config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
55
+ config._attn_implementation = "flash_attention_2"
56
+ config.vision_config._attn_implementation = "flash_attention_2"
57
+
58
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
59
+ model_id, torch_dtype=torch.bfloat16, config=config, device_map="cuda:0"
60
+ )
61
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True,
62
+ min_pixels=256 * 28 * 28, max_pixels=1280 * 28 * 28)
63
+ ```
64
+
65
+ **Data Preparation and Prompting**
66
+ ```python
67
+ texts = [
68
+ "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023.",
69
+ "Korea University",
70
+ ]
71
+ images = [
72
+ 'https://upload.wikimedia.org/wikipedia/commons/e/e9/Tesla_Cybertruck_damaged_window.jpg',
73
+ 'https://upload.wikimedia.org/wikipedia/commons/thumb/7/74/Korea_University.jpg/960px-Korea_University.jpg',
74
+ ]
75
+ task_instruction = 'Find an image that matches the given text.'
76
+
77
+ system_prompt = "Given an image, summarize the provided image in one word. Given only text, describe the text in one word."
78
+ represent_prompt = "Represent the given text in one word."
79
+
80
+ query_form = '<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{task_instruction}\n{query}\n{represent_prompt}<|im_end|>\n<|im_start|>assistant\n'
81
+ candidate_form = '<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{cand}<|im_end|>\n<|im_start|>assistant\n'
82
+
83
+ queries = [
84
+ query_form.format(system_prompt=system_prompt, task_instruction=task_instruction, query=text, represent_prompt=represent_prompt)
85
+ for text in texts
86
+ ]
87
+ candidates = [
88
+ candidate_form.format(system_prompt=system_prompt, cand='<|image_pad|>')
89
+ for _ in images
90
+ ]
91
+ ```
92
+
93
+ **Get Embeddings**
94
+ ```python
95
+ from PIL import Image
96
+ import io
97
+ from urllib import request
98
+ import torch.nn.functional as F
99
+
100
+ ## Query (Text)
101
+ inputs = processor(text=queries, images=None, return_tensors="pt", padding=True)
102
+ model_input = {k: v if isinstance(v, list) else v.to(model.device) for k, v in inputs.items()}
103
+ outputs = model(**model_input, return_dict=True, output_hidden_states=True)
104
+ hidden_states = outputs.hidden_states[-1]
105
+ query_embed = hidden_states[:,-1]
106
+
107
+ ## Candidate (Image)
108
+ pil_images = [Image.open(io.BytesIO(request.urlopen(url).read())) for url in images]
109
+ inputs = processor(text=candidates, images=pil_images, return_tensors="pt", padding=True)
110
+ model_input = {k: v if isinstance(v, list) else v.to(model.device) for k, v in inputs.items()}
111
+ outputs = model(**model_input, return_dict=True, output_hidden_states=True)
112
+ cand_embed = outputs.hidden_states[-1][:,-1]
113
+
114
+ query_embed = F.normalize(query_embed, p=2, dim=-1)
115
+ cand_embed = F.normalize(cand_embed, p=2, dim=-1)
116
+ print(query_embed @ cand_embed.T)
117
+ ```
118
+
119
+ **Outputs (Similarity)**
120
+
121
+ ~~~python
122
+ tensor([[ 0.3848, -0.0197],
123
+ [-0.0221, 0.2949]], device='cuda:0', dtype=torch.bfloat16)
124
+ ~~~
125
+
126
+ ## Training and Evaluation
127
+
128
+ ### Training Data
129
+
130
+ The model was fine-tuned on the **Massive Multimodal Embedding Benchmark (MMEB)** training set, which consists of approximately 829,000 pairs from 20 in-domain datasets.
131
+
132
+ * **Training Data:** [TIGER-Lab/MMEB-train](https://huggingface.co/datasets/TIGER-Lab/MMEB-train)
133
+
134
+ ### Evaluation Data
135
+
136
+ The model's performance was evaluated on the MMEB evaluation set, which includes 36 datasets covering four meta-tasks: Classification, Visual Question Answering (VQA), Retrieval, and Visual Grounding.
137
+
138
+ * **Evaluation Data:** [TIGER-Lab/MMEB-eval](https://huggingface.co/datasets/TIGER-Lab/MMEB-eval)
139
+
140
+ ### Performance
141
+
142
+ The SaHa-Qwen2-VL-7B-Instruct model achieves state-of-the-art performance in its parameter class on the MMEB benchmark, outperforming methods that rely on large-scale contrastive pre-training.
143
+
144
+ | Model | Params | Classification | Retrieval | VQA | Grounding | **IND** | **OND** | **Overall Avg.** |
145
+ | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
146
+ | Ours (SaHa-Qwen2-VL-2B) | 8.3B | 69.1 | 74.1 | 67.3 | 88.1 | **76.4** | **67.4** | **72.4** |
147
+
148
+
149
+ ## Citation
150
+
151
+ If you find this model useful in your research, please cite our paper:
152
+
153
+ ```bibtex
154
+ @misc{ju2025generatorembedder,
155
+ title={From Generator to Embedder: Harnessing Innate Abilities of Multimodal LLMs via Building Zero-Shot Discriminative Embedding Model},
156
+ author={Yeong-Joon Ju and Seong-Whan Lee},
157
+ year={2025},
158
+ eprint={2508.00955},
159
+ archivePrefix={arXiv},
160
+ primaryClass={cs.LG},
161
+ url={https://arxiv.org/abs/2508.00955},
162
+ }
163
+ ```
adapter_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": {
4
+ "base_model_class": "Qwen2VLForConditionalGeneration",
5
+ "parent_library": "src.vlm_backbone.qwen2_vl.modeling_qwen2_vl"
6
+ },
7
+ "base_model_name_or_path": "Qwen/Qwen2-VL-7B-Instruct",
8
+ "bias": "none",
9
+ "corda_config": null,
10
+ "eva_config": null,
11
+ "exclude_modules": null,
12
+ "fan_in_fan_out": false,
13
+ "inference_mode": true,
14
+ "init_lora_weights": "gaussian",
15
+ "layer_replication": null,
16
+ "layers_pattern": null,
17
+ "layers_to_transform": null,
18
+ "loftq_config": {},
19
+ "lora_alpha": 64,
20
+ "lora_bias": false,
21
+ "lora_dropout": 0.1,
22
+ "megatron_config": null,
23
+ "megatron_core": "megatron.core",
24
+ "modules_to_save": null,
25
+ "peft_type": "LORA",
26
+ "r": 8,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "q_proj",
31
+ "gate_up_proj",
32
+ "v_proj",
33
+ "k_proj",
34
+ "down_proj",
35
+ "o_proj",
36
+ "qkv_proj",
37
+ "out_proj"
38
+ ],
39
+ "task_type": null,
40
+ "trainable_token_indices": null,
41
+ "use_dora": true,
42
+ "use_rslora": false
43
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ad4b04241fa2bb5b35831424237b521a8810eea085c566809cfa1cbb3bdf38c
3
+ size 41841050
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "padding_side": "left",
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": {
23
+ "mrope_section": [
24
+ 16,
25
+ 24,
26
+ 24
27
+ ],
28
+ "rope_type": "default",
29
+ "type": "default"
30
+ },
31
+ "rope_theta": 1000000.0,
32
+ "sliding_window": 32768,
33
+ "tie_word_embeddings": false,
34
+ "torch_dtype": "bfloat16",
35
+ "transformers_version": "4.51.0",
36
+ "use_cache": false,
37
+ "use_sliding_window": false,
38
+ "video_token_id": 151656,
39
+ "vision_config": {
40
+ "depth": 32,
41
+ "embed_dim": 1280,
42
+ "hidden_act": "quick_gelu",
43
+ "hidden_size": 3584,
44
+ "in_channels": 3,
45
+ "in_chans": 3,
46
+ "mlp_ratio": 4,
47
+ "model_type": "qwen2_vl",
48
+ "num_heads": 16,
49
+ "patch_size": 14,
50
+ "spatial_merge_size": 2,
51
+ "spatial_patch_size": 14,
52
+ "temporal_patch_size": 2,
53
+ "torch_dtype": "bfloat16"
54
+ },
55
+ "vision_end_token_id": 151653,
56
+ "vision_start_token_id": 151652,
57
+ "vision_token_id": 151654,
58
+ "vocab_size": 152064
59
+ }
images/SaHa_logo.png ADDED

Git LFS Details

  • SHA256: cf97ebfc830ea65d75feb6ceb0064ab4f95ccbbb1259b1dacf1f7993e8e387bf
  • Pointer size: 131 Bytes
  • Size of remote file: 254 kB
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a5b72e53f421c7c77ff9c9a0462a914dc50ca236e811c3bf13a06f77c5d799
3
+ size 11420469
tokenizer_config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "extra_special_tokens": {},
138
+ "model_max_length": 32768,
139
+ "pad_token": "<|endoftext|>",
140
+ "padding_side": "left",
141
+ "processor_class": "Qwen2VLProcessor",
142
+ "split_special_tokens": false,
143
+ "tokenizer_class": "Qwen2Tokenizer",
144
+ "unk_token": null
145
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff