Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,60 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- HuggingFaceH4/CodeAlpaca_20K
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen3-0.6B
|
| 7 |
+
---
|
| 8 |
+
# 🧠 Qwen-0.6B – Code Generation Model
|
| 9 |
+
|
| 10 |
+
**Model Repo:** `XformAI-india/qwen-0.6b-coder`
|
| 11 |
+
**Base Model:** [`Qwen/Qwen-0.5B`](https://huggingface.co/Qwen/Qwen-0.5B)
|
| 12 |
+
**Task:** Code generation and completion
|
| 13 |
+
**Trained by:** [XformAI](https://xformai.in)
|
| 14 |
+
**Date:** May 2025
|
| 15 |
+
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
## 🔍 What is this?
|
| 19 |
+
|
| 20 |
+
This is a fine-tuned version of Qwen-0.6B optimized for **code generation, completion, and programming logic reasoning**.
|
| 21 |
+
|
| 22 |
+
It’s designed to be lightweight, fast, and capable of handling common developer tasks across multiple programming languages.
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
## 💻 Use Cases
|
| 27 |
+
|
| 28 |
+
- AI-powered code assistants
|
| 29 |
+
- Auto-completion for IDEs
|
| 30 |
+
- Offline code generation
|
| 31 |
+
- Learning & training environments
|
| 32 |
+
- Natural language → code prompts
|
| 33 |
+
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## 📚 Training Details
|
| 37 |
+
|
| 38 |
+
| Parameter | Value |
|
| 39 |
+
|---------------|--------------|
|
| 40 |
+
| Epochs | 3 |
|
| 41 |
+
| Batch Size | 16 |
|
| 42 |
+
| Optimizer | AdamW |
|
| 43 |
+
| Precision | bfloat16 |
|
| 44 |
+
| Context Window | 2048 tokens |
|
| 45 |
+
| Framework | 🤗 Transformers + LoRA (PEFT)
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## 🚀 Example Usage
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 53 |
+
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-0.6b-coder")
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-0.6b-coder")
|
| 56 |
+
|
| 57 |
+
prompt = "Write a Python function that checks if a number is prime:"
|
| 58 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 59 |
+
outputs = model.generate(**inputs, max_new_tokens=150)
|
| 60 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|