Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)
Browse files- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (27df4773338d81772fa1e04e4ea7f315b6733ff5)
Co-authored-by: Yuichiro Tachibana <[email protected]>
README.md
CHANGED
@@ -5,17 +5,16 @@ library_name: transformers.js
|
|
5 |
|
6 |
https://huggingface.co/microsoft/speecht5_hifigan with ONNX weights to be compatible with Transformers.js.
|
7 |
|
8 |
-
|
9 |
## Usage (Transformers.js)
|
10 |
|
11 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
12 |
```bash
|
13 |
-
npm i @
|
14 |
```
|
15 |
|
16 |
**Example:** Generate speech from text.
|
17 |
```js
|
18 |
-
import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@
|
19 |
|
20 |
// Load the tokenizer and processor
|
21 |
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
|
@@ -23,8 +22,8 @@ const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts');
|
|
23 |
|
24 |
// Load the models
|
25 |
// NOTE: We use the unquantized versions as they are more accurate
|
26 |
-
const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', {
|
27 |
-
const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', {
|
28 |
|
29 |
// Load speaker embeddings from URL
|
30 |
const speaker_embeddings_data = new Float32Array(
|
@@ -41,7 +40,7 @@ const { input_ids } = tokenizer('Hello, my dog is cute');
|
|
41 |
|
42 |
// Generate waveform
|
43 |
const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder });
|
44 |
-
console.log(waveform)
|
45 |
// Tensor {
|
46 |
// dims: [ 26112 ],
|
47 |
// type: 'float32',
|
|
|
5 |
|
6 |
https://huggingface.co/microsoft/speecht5_hifigan with ONNX weights to be compatible with Transformers.js.
|
7 |
|
|
|
8 |
## Usage (Transformers.js)
|
9 |
|
10 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
11 |
```bash
|
12 |
+
npm i @huggingface/transformers
|
13 |
```
|
14 |
|
15 |
**Example:** Generate speech from text.
|
16 |
```js
|
17 |
+
import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@huggingface/transformers';
|
18 |
|
19 |
// Load the tokenizer and processor
|
20 |
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
|
|
|
22 |
|
23 |
// Load the models
|
24 |
// NOTE: We use the unquantized versions as they are more accurate
|
25 |
+
const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { dtype: "fp32" }); // Options: "fp32", "fp16", "q8", "q4"
|
26 |
+
const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { dtype: "fp32" }); // Options: "fp32", "fp16", "q8", "q4"
|
27 |
|
28 |
// Load speaker embeddings from URL
|
29 |
const speaker_embeddings_data = new Float32Array(
|
|
|
40 |
|
41 |
// Generate waveform
|
42 |
const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder });
|
43 |
+
console.log(waveform);
|
44 |
// Tensor {
|
45 |
// dims: [ 26112 ],
|
46 |
// type: 'float32',
|