Xenova HF Staff whitphx HF Staff commited on
Commit
cf980c3
·
verified ·
1 Parent(s): 05bbb2d

Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)

Browse files

- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (27df4773338d81772fa1e04e4ea7f315b6733ff5)


Co-authored-by: Yuichiro Tachibana <[email protected]>

Files changed (1) hide show
  1. README.md +6 -7
README.md CHANGED
@@ -5,17 +5,16 @@ library_name: transformers.js
5
 
6
  https://huggingface.co/microsoft/speecht5_hifigan with ONNX weights to be compatible with Transformers.js.
7
 
8
-
9
  ## Usage (Transformers.js)
10
 
11
- If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12
  ```bash
13
- npm i @xenova/transformers
14
  ```
15
 
16
  **Example:** Generate speech from text.
17
  ```js
18
- import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@xenova/transformers';
19
 
20
  // Load the tokenizer and processor
21
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
@@ -23,8 +22,8 @@ const processor = await AutoProcessor.from_pretrained('Xenova/speecht5_tts');
23
 
24
  // Load the models
25
  // NOTE: We use the unquantized versions as they are more accurate
26
- const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { quantized: false });
27
- const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { quantized: false });
28
 
29
  // Load speaker embeddings from URL
30
  const speaker_embeddings_data = new Float32Array(
@@ -41,7 +40,7 @@ const { input_ids } = tokenizer('Hello, my dog is cute');
41
 
42
  // Generate waveform
43
  const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder });
44
- console.log(waveform)
45
  // Tensor {
46
  // dims: [ 26112 ],
47
  // type: 'float32',
 
5
 
6
  https://huggingface.co/microsoft/speecht5_hifigan with ONNX weights to be compatible with Transformers.js.
7
 
 
8
  ## Usage (Transformers.js)
9
 
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
  ```bash
12
+ npm i @huggingface/transformers
13
  ```
14
 
15
  **Example:** Generate speech from text.
16
  ```js
17
+ import { AutoTokenizer, AutoProcessor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, Tensor } from '@huggingface/transformers';
18
 
19
  // Load the tokenizer and processor
20
  const tokenizer = await AutoTokenizer.from_pretrained('Xenova/speecht5_tts');
 
22
 
23
  // Load the models
24
  // NOTE: We use the unquantized versions as they are more accurate
25
+ const model = await SpeechT5ForTextToSpeech.from_pretrained('Xenova/speecht5_tts', { dtype: "fp32" }); // Options: "fp32", "fp16", "q8", "q4"
26
+ const vocoder = await SpeechT5HifiGan.from_pretrained('Xenova/speecht5_hifigan', { dtype: "fp32" }); // Options: "fp32", "fp16", "q8", "q4"
27
 
28
  // Load speaker embeddings from URL
29
  const speaker_embeddings_data = new Float32Array(
 
40
 
41
  // Generate waveform
42
  const { waveform } = await model.generate_speech(input_ids, speaker_embeddings, { vocoder });
43
+ console.log(waveform);
44
  // Tensor {
45
  // dims: [ 26112 ],
46
  // type: 'float32',